

x

Abstract

In today's highly competitive business landscape, the need for an effective DSS (Decision

Support System) is an essential. Modern business organization has generated a vast

amount of raw data related to product, service, customers, etc. A hidden pattern in these

raw data is a key to designing an efficient DSS for the organization. Manual extraction of

these patterns from the large volume of raw data is unfeasible. Therefore, an association

rule mining: a data mining technique is widely used to extract useful pattern from the raw

data for designing efficient decision support system. The conventional association rule

mining is frequent itemset mining. It is widely used and popular for extracting related

items. The traditional approach focuses on whether the group of items frequently appears

in the dataset or not. However, in certain real-world scenarios, it becomes essential to

consider the quantity and importance of items as well. For example, in a supermarket to

identify profitable items from customer transaction data or in the medical field to discover

combinations of highly indicative symptoms of diseases. High utility itemset mining

incorporates the item's quantity and importance to address this need. Number of research

has been carried out on high utility itemset mining, with utility list-based methods

emerging as efficient techniques. These methods avoid the generation of candidate sets,

which can be computationally expensive. However, a major drawback of existing utility

list-based techniques is the need for costly join operations on utility lists. These operations

can degrade the algorithm's performance by increasing execution time and storage

requirements. The cost of the utility list join operations is directly related to the number

of comparisons required to find out the common transactions between the utility lists. In

this study, Proposed SCAO (Support Count Ascending Order) based search space

exploration technique to decrease the number of comparisons required to find common

transactions between the utility lists. So, it can minimize the cost of the join operations.

Also, existing state-of-the-art approaches perform unnecessary utility list join operations

of the itemsets that are not high utility itemsets. To address this issue, our proposed PUCP

(Predicted Utility Co-exist Pruning) uses PUCS (Predicted Utility Co-exist Structure) to

eliminate unnecessary join operations. The proposed approach using the PUCP is called

the PUCP-Miner. The performance of the suggested SCAO-based approach and PUCP-

Miner is assessed with the existing algorithms like HUI-Miner, mHUI-Miner, and ULB

xi

miner on some of the standard real datasets. The experimental outcomes show that the

proposed SCAO-based approach and PUCP-miner have outperformed existing state-of-

the-art methods by up to 59% in running time and up to 46% in memory consumption.

xii

Acknowledgement

I want to express my sincere thanks to everyone who has provided unwavering support

and encouragement during my doctoral research journey.

I want to begin my heartfelt thanks to Dr. Sanjay M Shah sir, my Ph.D. supervisor. He is

a Professor and serves as the Head of the Computer Engineering Department at

Government Engineering College, Rajkot. Sir has consistently provided me with

invaluable support and thoughtful guidance throughout the entire duration of my research.

I am profoundly grateful for his unique insights, continuous motivation, and the

significant time he dedicated to shaping this research and illuminating a previously

undisclosed aspect of the study.

I would like to extend my sincere gratitude to the members of my Doctorate Progress

Committee (DPC), namely Dr. Sanjay P. Patel, who serves as an Assistant Professor in

the Computer Engineering Department at Government Engineering College,

Gandhinagar, and Dr. Uttam G Chauhan, an Assistant Professor in the Computer

Engineering Department at Vishwakarma Government Engineering College,

Chandkheda. Their insightful comments, valuable suggestions, and encouragement to

view the problem from various angles have been immensely helpful. Their approachable

demeanour and appreciation for my work have consistently fostered a supportive

atmosphere, boosting my confidence to overcome challenges and push my boundaries.

I am also thankful to the Honourable Vice-Chancellor, Registrar, Controller of

Examination, Dean of the PhD section, and the entire team at the PhD Section of Gujarat

Technological University (GTU) for their invaluable assistance and unwavering support.

I would like to express my deep appreciation to Dr. S. P. Dave, the Principal of GEC

Gandhinagar, Dr. D. A. Parikh, the Head of the CE Department, and Professor J. S. Dhobi

from the IT department for granting me the necessary resources and facilities to reach my

desired goals.

I wish to extend my gratitude to my parent institution, Government Engineering College,

Gandhinagar, and the Department of Technical Education, Gujarat, for their

comprehensive support throughout my research journey. I am fortunate to have received

blessings and guidance from the Dr. K. K. Jani, and Dr. Pratik Barot. Additionally, I

xiii

would like to express my thanks to my colleagues and well-wishers in the CE/IT

department for their continuous encouragement and support during the entire duration of

my research work.

I hold the utmost respect and affection for my parents, wife, brothers, and my children

Siddhi and Aarav, as well as my niece and nephews, Riyan, Preksha, Siddh, Anay, Jency,

and Meera. I want to convey my profound gratitude for their unwavering support and

collaboration. I am particularly grateful to my wife, Vandana, for her consistent

encouragement, tireless support during my research, and her overall cooperation.

Finally, I want to convey my profound gratitude to my dear friend Mahendra N Patel from

the depths of my heart. Without his continuous support, motivation, and encouragement,

reaching this stage would not have been possible.

Since this has been a lengthy journey, there might be a few names I have unintentionally

forgotten, yet they have played a crucial role in this significant undertaking. I humbly ask

for forgiveness for any oversight and extend my sincere respect to each and every one of

them.

I am extremely thankful to Almighty God for giving me patience and strength to complete

this research.

Patel Suresh B.

xiv

Table of Contents

DECLARATION.. i

CERTIFICATE .. ii

Course-work Completion Certificate ... iii

Originality Report Certificate .. iv

Copy Originality Report ... v

PhD Thesis Non-Exclusive License ... vii

Abstract.. x

Acknowledgement.. xii

Table of Contents .. xiv

List of Abbreviations... xvi

List of Figures ... xviii

List of Tables ... xx

Chapter 1. Introduction ... 1

1.1Introduction ... 1

1.2Background Study ... 2

1.2.1 Data Mining.. 2

1.2.2 Knowledge Discovery From Database... 3

1.2.3 Association Rule Mining... 4

1.2.4 Application Area of Data Mining .. 7

1.3Problem Statement... 9

1.4Aim and Research Objective.. 10

1.5Research Contributions.. 10

1.5.1 Efficient search space exploration technique ... 10

1.5.2 Efficient pruning mechanism (PUCP) ... 11

1.6 Structure of Thesis .. 11

Chapter 2. Problem Background... 13

2.1 Introduction .. 13

2.2 Preliminaries ... 13

2.3 Challenges of HUIM... 16

2.4 Open Issue .. 16

Chapter 3. Literature Survey... 18

xv

3.1 Introduction .. 18

3.2 Candidate generation and test-based approach (Apriori based) 19

3.3 Tree based approaches .. 23

3.4 List based approaches ... 28

3.4.1 HUI-Miner.. 29

3.4.2 mHUI-Miner... 33

3.4.3 ULB-Miner ... 35

3.4.4 HUI-Miner* .. 38

3.4.5 UBP-Miner ... 39

3.5Research Gap... 40

Chapter 4. SCAO based Search Space Exploration Technique for HUIM................ 42

4.1 Introduction .. 42

4.2 Search Space Exploration in HUIM... 42

4.3 SCAO-based search space exploration .. 44

4.3.1 A Construction of Utility list of 2-itemset and k-itemset................................ 47

4.3.2 Pruning Mechanism .. 49

4.3.3 Analysis of Proposed Method Vs. State-of-the-art methods........................... 50

4.4An illustrative example. ... 52

4.5Performance Evaluation... 53

4.5.1 Experimental Environment.. 53

4.5.2 Performance Evaluation with HUI-Miner.. 54

4.5.3 Performance Evaluation with mHUI-Miner... 56

4.5.4 Performance Evaluation with ULB-Miner ... 57

Chapter 5. PUCP-Miner: Predicted Utility Co-exist Pruning 60

5.1Introduction ... 60

5.2The PUCS (Predicted Utility co-exist Structure) .. 60

5.3The PUCP (Predicted Utility co-exist Pruning) .. 61

5.4 Performance Evaluation .. 65

5.4.1 Execution Time Analysis. ... 65

5.4.2 Memory Analysis.. 68

Chapter 6. Conclusion and Future Work.. 71

6.1 Conclusion.. 71

6.2 Future Work.. 72

REFERENCES... 73

List of Publications... 79

xvi

List of Abbreviations

DSS : Decision Support System

FIM : Frequent Itemset Mining

HUIM : High Utility Itemset Mining

DM : Data Mining

KDD : Knowledge Discovery in Database

CRM : Customer Relationship Management

FI : Frequent Itemset

PUCS : Predicted Utility Co-exist Structure

PUCP : Predicted Utility Co-exist Pruning

SCAO : Support Count Ascending Order

DB : Database

HUI : High Utility Itemset

TU : Transaction Utility

TWU : Transaction Weighted Utility

HUI-Miner : High utility Itemset miner

mHUI-Miner : Modified High Utility itemset miner

ULB-Miner : Utility List Buffer miner

TRid : Transaction Identification

iutility : itemset's utility

rutility : remaining utility

OOA : Objective-Oriented Association

TWDC : Transaction Weighted Downward Closure

HTWU : High Transaction Weighted Utility

IIDS : Isolated Item Discarding Strategies

DCG : Direct Candidates Generation

FUM : Fast Utility Mining

HYP-Tree : High-Yield Partition Tree

xvii

ARM : Association Rule Mining

UPM : Utility Pattern Mining

HUC-Prune : High-Utility Candidate Prune

UP-Tree : Utility Pattern Tree

UP-Growth : Utility Pattern growth

DLN : Decreasing Local Node utilities

DLU : Discarding Local Unpromising items

DGN : Decreasing Global Node Utilities

DGU : Discarding Global Unpromising items

PHUI : Potential High Utility Itemsets

CHUI-Mine : Concurrent High Utility Itemset Mining

FHM : Fast algorithm for High utility itemset Mining

BEO : Bit mErge cOnstruction

PU : Predicted Utility

IHUP : Incremental High Utility Pattern

IHUPTF : Incremental High Utility Pattern Transaction Frequency

IHUPPL : Incremental High Utility Pattern Lexicographic

IHUPTWU : Incremental High Utility Pattern Transaction Weighted Utility

FP : Frequent Pattern

SL : Summary List

SUL : Summary of Utility list

ShFSM : Share counted Frequent Set Mining

xviii

List of Figures

Figure 1.1 Classification 3

Figure 1.2 Clustering 3

Figure 1.3 Knowledge Discovery from database 4

Figure 1.4 Data mining application area 8

Figure 3.1 Publication trend of HUIM 18

Figure 3.2 Classification of HUIM approaches 19

Figure 3.3 Set enumeration tree 32

Figure 3.4 Global IHUP Tree 34

Figure 3.5 Local Prefix Tree for Tc 34

Figure 3.6 Local Prefix Tree for Tcd 34

Figure 3.7 Utility list buffer for sample database 36

Figure 3.8 Sum of utility list for sample database 36

Figure 3.9 Utility list buffer after inserting itemset {CD} 37

Figure 3.10 Summary of Utility list after inserting itemset {CD} 37

Figure 3.11 Utility list buffer after inserting itemset {CA} 37

Figure 3.12 Summary of Utility list after inserting itemset {CA} 37

Figure 3.13 Utility list buffer after inserting itemset {CB} 37

Figure 3.14 Summary of Utility list after inserting itemset {CA} 38

Figure 4.1 Set Enumeration Tree 43

Figure 4.2
Proposed Model of SCAO-based search space exploration
technique 44

Figure 4.3 Set enumeration tree of a sample dataset 47

Figure 4.4 Number of comparisons (HUI-Miner Vs. SCAO-HUI-Miner) 55

Figure 4.5 Execution time comparison (HUI-Miner Vs. SCAO-HUI-Miner) 55

Figure 4.6 Number of comparisons (mHUI-Miner Vs SCAO-mHUI-Miner) 56

Figure 4.7
Execution time comparison (mHUI-Miner Vs SCAO-mHUI-
Miner) 57

Figure 4.8 Number of comparisons(ULB-Miner Vs SCAO-ULB-Miner) 58

Figure 4.9 Execution time comparison (ULB-Miner Vs SCAO-ULB-Miner) 59

xix

Figure 5.1 PUCS Structure 61

Figure 5.2 PUCS of the sample database 61

Figure 5.3 Proposed Model for PUCP-Miner 62

Figure 5.4 Execution time comparison (HUI-Miner Vs PUCP-Miner) 66

Figure 5.5 Execution time comparison (mHUI-Miner Vs PUCP-Miner) 67

Figure 5.6 Execution time comparison (HUI-Miner Vs PUCP-Miner) 68

Figure 5.7 Memory comparison (mHUI-Miner Vs PUCP-Miner) 69

Figure 5.8 Memory comparison (ULB-Miner Vs PUCP-Miner) 70

xx

List of Tables

Table 1.1 Sample database for FIM 5

Table 2.1 Transaction database 14

Table 2.2 Utility table 14

Table 2.3 Sample transaction database 14

Table 2.4 Sample Utility Table 14

Table 2.5 Sample transaction Database 16

Table 2.6 Sample utility Table 16

Table 3.1 Summary of apriori based approaches for HUIM 22

Table 3.2 Summary of apriori based approaches for HUIM 26

Table 3.3 Sample transaction database 29

Table 3.4 Sample utility table 29

Table 3.5 Sample revised database 29

Table 3.6 Initial utility list of 1-itemset 30

Table 3.7 Utility list of 2-itemset 31

Table 3.8 Summary of utility list based approaches for HUIM 39

Table 4.1 Sample Transaction Database 45

Table 4.2 Sample Utility Table 45

Table 4.3 Utility Lists of 1-Itemset 45

Table 4.4 Utility Lists of 2-Itemset 48

Table 4.5 Utility Lists of 3-Itemset 48

Table 4.6 Utility Lists of 4-Itemset 48

Table 4.7 Support count and TWU of item 52

Table 4.8 Revised Transaction dataset 52

Table 4.9 Characteristics of Dataset 54

Table 4.10 No of comparisons (HUI-Miner Vs SCAO-HUI-Miner) 54

Table 4.11 Execution time comparison (HUI-Miner Vs SCAO-HUI-Miner) 55

Table 4.12 No of comparisons (mHUI-Miner Vs SCAO-mHUI-Miner) 56

Table 4.13 Execution time comparison (mHUI-Miner Vs SCAO-mHUI-Miner) 57

xxi

Table 4.14 No of comparisons (ULB-Miner Vs SCAO-ULB-Miner) 58

Table 4.15 Execution time comparison (ULB-Miner Vs SCAO-ULB-Miner) 58

Table 5.1 Sample Transaction Database 61

Table 5.2 Sample Utility Table 61

Table 5.3 Dataset characteristics used in experiments 65

Table 5.4 Execution time comparison (HUI-Miner Vs PUCP-Miner) 66

Table 5.5 Execution time comparison (mHUI-Miner Vs PUCP-Miner) 67

Table 5.6 Execution time comparison (ULB-Miner Vs PUCP-Miner) 67

Table 5.7 overall improvement of proposed approaches 68

Table 5.8 Memory Requirement (mHUI-Miner Vs PUCP-Miner) 69

Table 5.9 Memory Requirement (ULB-Miner Vs PUCP-Miner) 70

Introduction

1

CHAPTER-1

Introduction

1.1 Introduction

Nowadays, businesses are rapidly growing due to globalization [1]. Any business

organization has to design an efficient DSS (Decision Support System) to sustain tough

competition [2]. In today's era, every business organization generates a vast volume of data

related to products, services, customers, etc. Every year, approximately 15 exabytes of fresh

data are produced by various organizations [3]. The majority of data is unprocessed and

useless. In the current scenario, data is an organizational asset if appropriately used to design

an efficient DSS [4]. The knowledge/information hides inside the raw data that can be

utilized to design an efficient DSS. It is practically impossible to derive the

knowledge/information from the raw data manually [3] [5]. Data mining comprises a

collection of techniques to automatically discover the knowledge hidden inside the raw data

[6].

FIM (Frequent Itemset Mining) is a well-known data mining method to find out the vital

pattern for designing DSS in business [7]. FIM is also used to study the customer buying

pattern from the historical data in the superstore [8]. FIM identifies a set of items that are

repeatedly appear together from the transaction database. A common issue in transaction

databases is the identification of frequent itemsets, which comprise items regularly

purchased by customers in numerous transactions [9]. To illustrate, consider the scenario

where many customers buy noodles and spicy sauce together. These discernible patterns

hold significant value for human comprehension and can effectively support and inform

decision-making processes. For instance, the {noodles, spicy sauce} combination might

guide marketing strategies such as promoting noodles and spicy sauce. The exploration of

frequent itemsets constitutes an extensively researched task in the area of data mining, with

its applications including various domains. Essentially, it entails the analysis of a database

to unveil instances where specific values (items) co-occur within a collection of database

entries, i.e. (transactions) [10]. An item’s frequency is not much interesting for the users as

it shows only the number of times the item present in the dataset [11]. In reality, more interest

Introduction

2

is highly profitable items, whereas the most valuable customers yield high profits in the retail

business. In the medical domain, the symptoms that contribute more to the diseases are most

important [12]. The patterns not discovered in FIM include rarely purchased but highly

profitable items, customers who purchased rarely but generated high profit [13], or the

symptoms that rarely appear but contribute more to the diseases [12]. It is necessary to

consider the item’s utility in the analysis. The item's utility shows its usefulness like quantity,

importance, profit, weight, etc. [14]. To overcome the limitation of FIM, the HUIM (High

Utility Itemset Mining) problem has been defined [11]. The HUIM discovers the set of items

that generate a high profit for the retail business, identifies a valuable customer that made a

high profit for the business, and finds more significant symptoms for the disease[8][15].

Unlike the FIM, HUIM considers the importance and quantity of items, so the pattern

generated from HUIM is more important than FIM for designing a DSS.

1.2 Background Study

1.2.1 Data Mining

In the era of globalization and open markets, every business struggles to sustain tough

competition [16]. In a recent scenario, huge amounts of data about the product, customer,

sales, production, consumption, expenditure, etc., are produced by various organizations [17,

18]. To dominate the market, the organization needs to utilize this data for designing various

decision support systems about production, sales, customer relationships etc. [19]. Manual

analysis of this huge data is practically impossible. Automatic methods are required to

analyze the huge amounts of data. DM (Data Mining) plays a vital role in data analysis to

discover useful knowledge. DM provides the tools and techniques to automatically discover

the knowledge from the massive raw data [20]. DM is also known as KDD (Knowledge

Discovery in Database) [20]. Data mining methods like association rules, classification,

clustering, genetic algorithms, neural networks, nearest neighbor methods and artificial

intelligence are used to find out the unseen knowledge from the data [20, 21].

 Classification: - Assigned objects in a collection to specify classes or categories. The

objective is to predict the target class for new cases [22].

Introduction

3

Figure 1.1: Classification

 Clustering:- Grouping the objects based on the information found in the data describing

the objects or their relationships [23].

Figure 1.2: Clustering

 Association Rules: - Association rule mining finds the relationship between the itemsets

and shows how frequently the itemset relates to others [24].

1.2.2 Knowledge Discovery From Database

KDD is the structured method for discovering useful patterns from massive, complicated

datasets[25]. The derived pattern from the KDD process is comprehensible, useful,

innovative, and valid. The core of the KDD process is data mining[26]. The KDD process

follows the below-mentioned steps[25]. The various steps for the KDD process are presented

in Figure 1.3.

 Selection: It selects the portion of the data from the massive data from which a pattern

can be found. The primary objective is to transform the original dataset into a target

dataset.

 Pre-processing: The collected data may not be directly used for the analysis. It should

be cleaned and transformed before using it. This step involves activities like data

integration, normalization, noise removal, etc.

Introduction

4

 Transformation: It includes reducing the data and converting it into an appropriate

presentation for the DM techniques.

 Data mining: Applied appropriate data mining methods or algorithms to extract the

interesting patterns. These methods include clustering, classification, and association rule

mining. It discovers the patterns used to design a typical business decision support

system.

 Evaluation: The discovered patterns and relationships are interpreted in this step. The

pattern generated by data mining steps is assessed to see if it is useful or not. Otherwise,

the process of the KDD is restarted from the previous step.

Figure 1.3: Knowledge Discovery from Database

1.2.3 Association Rule Mining

ARM (Association Rule Mining) is used to analyze a large volume of data to uncover

intriguing linkages and relationships. This rule displays the number of times an itemset

appears in a dataset[27]. The association rule is derived the correlation among the items [7].

It is a two-step procedure. Initially, it determines the frequent pattern from the extensive

data, and secondly, it generates interesting association rules[20]. For the given set of items

and set of transactions in the retail dataset, the transaction contains the collection of items.

The expression of the association rule A B where A and B are the set of items. The rule

indicates the transactions that include itemset A tend to have itemset B[2][29].

Introduction

5

1.2.3.1 Frequent Itemset Mining

FIM (Frequent Itemset Mining) is the preliminary step for the ARM. In the transaction

database, FIM identifies set of items that exist together frequently. The frequency is

considered as the quantity of transactions containing itemset. If the frequency of the itemset

is more than the user-defined min_support threshold, then the itemset is frequent [30].

Definition 1.1: support count (σ)

The support count of itemset is defined as the number of transactions containing itemset.

Consider the itemset X, σ (X) = | { | X ⊆ , ∈ } | (1.1)
Where the |.| defines the count of transactions Ti.

Consider the sample database as described in Table 1.1. For the itemset X = {Pen, Pencil},

the support count of X is three as pen and pencil appear in three transactions.

Table 1.1: Sample database for FIM

Transaction-ID Items

1 Pen, Pencil, Eraser,

2 Pencil, Eraser, Sharpener

3 Pen, CD, DVD

4 Eraser, CD

5 Pen, CD, DVD

6 Pen, Pencil, Eraser, Sharpener

7 Pen, Eraser, Sharpener, DVD

8 Eraser, CD, DVD

9 Sharpener, CD, DVD

10 Pen, Pencil, Eraser, Sharpener, CD, DVD

Definition 1.2: Frequent Itemset

For an itemset X, if the support count of itemset X is not less than the user-defined

min_support threshold than X is called FI (Frequent Itemset).() ≥ _ (1.2)

Introduction

6

Consider the itemset X = {pencil, eraser} of database mentioned in the Table 1.1 and the

user-defined min_support is 35%. Then the itemset X is a frequent itemset as its support

count σ (X) is four, i.e. 40%, which is not below the min_support threshold.

1.2.3.2 Generation of association rule

The coexistence of the itemsets is described by association rule. Consider frequent itemset

X = {I1, I2, I3, …., In}. A and B are the two subsets of X, A∩B = ø, A ≠ ø, B ≠ ø, and

AUB=X, then the association rule AB holds the correlation between itemset A and B.

Support and confidence are the measures to evaluate the strength of the rule[31].

Definition 1.3: Support (s)

Support of the rule indicates the number of transactions containing the group of itemsets.

It decisive how frequently the rule is relevant to a given dataset. Consider the support (s) of

rule AB that indicates the percentage of the transactions containing AUB in a given dataset

of N transactions[20].

(→) = () (1.3)
Consider the frequent itemset X = {pencil, eraser} from the dataset in Table 1.1. For the

association rule pencil eraser, the support (s) of the rule is 4/10, i.e. 40% or 0.4.

Definition 1.4: confidence (Conf)

For the rule AB, the confidence of rule is Conf(AB), which indicates that the percentage

of times A appears and also appears B

Confidence shows the reliability of the rule. Consider the confidence of rule AB is

Conf(AB), which indicates the percentage of times A appears and also appears B. The

conditional probability is P(B|A)[20].

(→) = (|) = ()() (1.4)
The strong association rule satisfies the user-defined (min_support) minimum support and

(min_conf) minimum confidence. Consider the association rule pencil eraser derived from

Introduction

7

the database shown in Table 1.1. The confidence Conf (pencil eraser) is one as 100 percent

of the time the transaction contains pencil also contains eraser.

Association rule mining is the familiar data mining technique to discover useful patterns

from a large amount of transactional data of various domains like retail stores, medical, etc.

FIM is the subfield and foundation of association rule mining. The main limitation of the

FIM is that it considers the presence or absence of the item. The rules derived from the FIM

can guide only the co-existence of the items. FIM identifies the set of item that appear

frequently together in the transaction database. It does not consider the item’s

importance/weight and the quantities. In real-world applications, it is necessary to consider

the item’s quantities and importance (utility) to design an efficient DSS (Decision Support

System). The HUIM (High Utility Itemset Mining) problem has been defined to address

this FIM issue[32][33]. Unlike FIM[7][34], the item’s quantities and importance are

considered in the HUIM problem. The association rules derived from the HUIM are more

significant than the FIM in designing a decision support system. HUIM finds the set of items

that yield a high profit from the transaction database, identifies the valuable customer for the

business to contribute to high profit [35], and discovers the symptoms that contribute more

to the disease.

1.2.4 Application Area of Data Mining

Data mining serves as a potent tool employed across diverse industries for extracting

valuable insights and patterns from extensive datasets. These insights can be strategically

leveraged to gain a competitive edge within the knowledge-based economy. Figure 1.4

represents various application area of data mining[36][37].

 CRM (Customer Relationship Management): Data mining empowers businesses to

scrutinize customer data, uncovering patterns and preferences. This information can be

harnessed to personalize marketing initiatives, enhance customer service, and bolster

customer retention efforts.

Introduction

8

Figure 1.4: Data mining application area

 Market Basket Analysis: Retail establishments utilize data mining to scrutinize

customer purchase histories, revealing associations between the products. This, in turn,

allows for strategic product placement and promotional optimization, ultimately

bolstering sales.

 Fraud Detection and Prevention: Banking and financial institutions utilize data mining

to identify fraudulent activities by meticulously analyzing transaction data and searching

for unusual patterns or anomalies that may indicate fraud.

 Healthcare and Medical Research: Data mining is instrumental in dissecting electronic

health records, clinical data, and genomic information. This analytical process uncovers

disease patterns, refines treatment strategies, and ultimately enhances patient outcomes.

 Recommendation Systems: Corporations like Netflix and Amazon harness data mining

techniques to propose products or content tailored to individual users considering their

historical preferences and behaviors.

 Manufacturing and Quality Control: DM can be employed in manufacturing processes

to pinpoint defects, optimize production procedures, and minimize downtime by

predicting equipment failures.

 Sentiment Analysis: Social media platforms and businesses employ data mining to

assess text data and user comments, gauge public sentiment, track brand perception, and

inform strategic marketing decisions.

Introduction

9

 Supply Chain Management: Data mining plays a pivotal role in streamlining supply

chain operations. Analyzing historical data facilitates demand forecasting, reduces

inventory expenses, and improves logistics.

 Energy Consumption Analysis: Utility providers employ data mining to scrutinize

energy consumption patterns. This analysis guides distribution optimization, peak load

management, and the implementation of energy-saving initiatives.

 E-commerce and Pricing Optimization: E-commerce platforms employ DM to

dynamically adjust pricing considering the factors such as demand, competitive pricing,

and customer behavior, thus maximizing profits.

 Human Resources: Data mining aids in talent acquisition, employee retention, and

workforce planning by scrutinizing employee data to identify high-performing

candidates.

 Environmental Monitoring: Data mining is used in analyzing environmental data

encompassing weather patterns, pollution levels, and ecological trends. It aids in

conservation efforts and facilitates disaster prediction.

 Education: Educational institutions employ data mining to assess student performance

data, allowing the identification of at-risk students, personalization of learning

experiences, and enhancements in educational outcomes.

 Telecommunications: DM is used to scrutinize call data records, enabling fraud

detection, optimizing network performance, and predicting customer churn in telecom

enterprises.

 Transportation and Logistics: Data mining is pivotal in optimizing routes, predicting

vehicle maintenance requirements, and forecasting demand for transportation services.

1.3 Problem Statement

According to the studies by C.Zhang et al. (2018)[15], P F. Viger (2019)[38], and W.Gan et

al. (2019)[39], utility list-based HUIM approaches are recent and better performing than

other two-phase and pattern growth approaches. However, the performance of the utility list-

based approaches is limited due to several costly utility list join operations. The focused

problem statement of this research is:

“To propose efficient high utility itemset mining approach which reduces the cost of the

utility list join operations and minimize the join operations as well.”

Introduction

10

1.4 Aim and Research Objective

The aim of the research is to develop an efficient approach for HUIM by eliminating the

unnecessary utility list join operations and reducing comparisons required to search a

common elements between two utility lists in join operation. The proposed research work is

the following objectives:

 To study and investigate existing methods for the HUIM.

 To identify the challenges for the HUIM.

 To identify the scope to enhance the HUIM algorithm’s performance.

 To develop and investigate the efficient method for exploring the search space to reduce

the cost of utility list join operations by minimize the comparisons required to join utility

lists.

 To design a novel structure to store the itemset’s predicted utility which is used to

develop an effective pruning mechanism.

 To develop and investigate an efficient pruning mechanism to decrease the join count by

eliminating unnecessary join operations of utility lists.

 To implement and assess the effectiveness of the suggested methods.

 To compare the results of the proposed approaches with existing state-of-the-art

methods.

1.5 Research Contributions

The main contribution of the research is to design efficient utility list join operations by

decreasing the comparisons. The comparisons required to find out the common elements

between the utility lists can be decrease by efficiently exploring the search space. To design

an effective pruning mechanism, PUCP (Predicted Utility Co-exist Pruning) to decrease the

number of join operations.

1.5.1 Efficient search space exploration technique

The contribution of the research is to design efficient utility list join operations by reducing

the comparisons required to find the common elements between the utility lists.

Comparisons can be reduces by efficiently exploring the search space. The proposed SCAO

(Support Count Ascending Order) based search space exploration technique reduces the cost

Introduction

11

of utility list join operations by decreasing comparisons required to find common

transactions between utility lists.

1.5.2 Efficient pruning mechanism (PUCP)

The significant contribution of the research is study the items co-existence in the dataset.

Predicted Utility Co-exist Structure, known as PUCS, proposed to store the utility data.

Predicted Utility Co-exist Pruning, known as PUCP, proposed eliminating unnecessary

utility list join operations. PUCP mechanism greatly reduces the utility list join operations

and thus improves the algorithm’s performance. It eliminates the low utility itemsets directly

without performing the join operations.

1.6 Structure of Thesis

Chapter 1 includes the general introductions of the research work. It explains the data

mining, the KDD Process, and the various data mining techniques, specifically association

rule mining. It also discusses the data mining applications in the real world. The problem

statement and objective of the research is also included in this chapter. The chapter ends

with the research contribution.

Chapter 2 presents a problem background with defined various terms associated with HUIM.

The challenges of the HUIM problem are explained. Also, discuss the open issue for the

HUIM at last.

Chapter 3 presents the comprehensive literature survey of HUIM. It shows the various

categories of the HUIM approaches. The detailed review about different state-of-the-art

algorithms falls under each category described in this chapter. The literature review

incorporates existing apriori-based, tree-based, and utility list-based approaches used for

HUIM. A summary of reviews and a discussion are also covered. The research gap is

explained at the last.

Chapter 4 discussed the efficient SCAO (Support Count Ascending Order) based search

space exploration technique. Through the time complexity comparisons, it shows the SCAO

based search space exploration technique required less comparisons compare to TWU

ascending order based technique used by other state-of-the-art approaches. The chapter is

Introduction

12

completed with the experimental result analysis of proposed approach with other state-of-

the-art methods on some standard real datasets.

Chapter 5 discusses the proposed PUCP (Predicted Utility Co-exist Pruning) uses the PUCS

(Predicted Utility Co-exist Structure). Also discussed the how the PUCP-Miner eliminates

the unnecessary utility list join operations. It presents a detailed result analysis and

performance comparison with the traditional algorithms on some real datasets. At last

performance of the combine approaches SCAO based and PUCP is compared with other

state-of-art methods.

Chapter 6 includes a conclusion that summarizes the research findings. It discusses the

experimental study's major findings and observations. It also represent the future

enhancement of the work.

Problem Background

13

CHAPTER-2

Problem Background

2.1 Introduction

From the transaction dataset, HUIM (High Utility Itemset Mining) finds the itemsets that

yield high profits. HUIM considers the item’s quantity in every transaction and the utility of

each item in the database.

2.2 Preliminaries

Let set I = {i1, i2, i3 ………., in} is the single itemset. Database (DB) is the collection of

transactions and utility table is presented in Table 2.1 and Table 2.2. The utility of an

individual item is shown in utility table. The transaction consists itemset with quantities. The

collection of transactions in the DB are (T1, T2, T3……Tm). Each transaction is uniquely

identified by Ti. The transaction Ti is definite as= { : ()| 1 ≤ ≤ , 1 ≤ ≤ } (2.1)

The items in the transaction Ti is a subset of I. The items in Ti are associated with quantities

defined as count q() (where 1≤ k ≤ n) called an internal utility of the item in the transaction.

The utility table maintains the utility (importance/weight/profit) values of each item i in I,

known as an external utility. The sample database and utility table are demonstrated in Table

2.3 and Table 2.4, respectively.

Definition 2.1: Item's utility

For the item ik in the transaction Tj, the item’s utility of ik is u (ik, Tj) = q(ik, Tj) × p(ik).

i.e. u(k,T3) = q (k, T3) × p(k) = 15

Problem Background

14

Table 2.1: Transaction database

id Transactions

T1 q (i1), q(i2), q(i3)………. q(in)

T2 q (i1), q(i2), q(i3)………. q(in)

T3 q (i1), q(i2), q(i3)………. q(in)

. ………………………..

. ……………………………

.

Tm q (i1), q(i2), q(i3)………. q(in)

Table 2.2: Utility table

Item i1 i2 ……….. in

Profit p(i1) p(i2) ……….. p(in)

Table 2.3: Sample transaction database

Transaction k l m n o p q

T1 - 1 2 - 1 - -

T2 - - - - - 3 1

T3 3 4 - - 2 - 1

T4 1 1 - 1 - - -

T5 1 2 3 4 5 - -

Table 2.4: Sample Utility Table

Item k l m n o p q

Profit 5 1 3 4 2 1 2

Definition 2.2: Itemset‘s utility

For the itemset Px in the transaction Tj, the itemset Px‘s utility is

(,) = (,)∈ ∈ (2.2)
i.e. consider itemset Px={m,n}, u(Px,T5)=u(m,T5) + u(n,T5)=25

Definition 2.3: Itemset’s utility in database DB

For the itemset Px and the transaction database DB, the Px’s utility in DB is() = ∑ (,)⊂ ^ ∈ (2.3)

i.e. consider itemset Px={k,l},the itemset Px exist in transactions T3, T4 and T5. So,

u(Px) = u(Px,T3) + u(Px,T4) + u(Px,T5) = 32

Definition 2.4: Minimum utility threshold

It is the user-specified utility threshold denoted as MinUtility.

Problem Background

15

Definition 2.5: High utility itemset

The itemset Px is a high utility itemset, if its utility value is higher than the user-defined

MinUtility threshold

HUIset = {Px | Px⊆ I, u(Px) ≥ MinUtility} (2.4)

i.e., consider MinUtility=15 and itemset Px = {k,l}, u(k,l) is 32, which is greater than

MinUtility, indicating that Px is a high utility itemset.

Definition 2.6: HUIM Problem.

Extracting all the itemsets from the database which has utility value not lower than the user-

specified minimum utility (MinUtility) threshold.

Definition 2.7: Support count

The support count of itemset Px is the transaction count in which itemset Px exists and is

defined as support (Px) = | Px |

i.e., the support count of itemset Px= {l} is four as itemset l exists in 4 transactions. While

the support count of itemset Px= {lm} is 2.

Definition 2.8: Transaction’s utility

The transaction's utility is obtained by summing up the utility values of all the items present

in that particular transaction. It is defined as

() = (,) (2.5)∀ ∈
i.e The transaction utility of transaction T1 is TU(T1) = u(l,T1) + u(m,T1) + u(o,T1) = 9

Definition 2.9: TWU (Transaction Weighted Utility)

The TWU of an itemset Px is calculated as the total of the transaction utilities of all

transactions containing the itemset Px.

() = () (2.6)∈
i.e. TWU(n) is the total of transaction utility of transaction T4 and T5 as n belongs to

transactions T4 and T5, So TWU(n) = TU (T4) + TU(T5) = 52

Problem Background

16

2.3 Challenges of HUIM

The HUIM problem is much tougher than the FIM problem. FIM, the downward-closure-

property states that the frequency (support) of the itemset is anti-monotonic[7], which means

supersets of an infrequent itemset are infrequent, and subsets of a frequent itemset are

frequent, which is called the Apriori property. It is effective to trim (prune) the search space.

But in HUIM, the utility measure is neither anti-monotonic nor monotonic. An itemset with

high utility may have a subset or superset with lesser, equal, or more utility[40]. Therefore,

the techniques employed in FIM to narrow down the search space, leveraging the downward-

closure property of the support, cannot be directly employed in HUIM for search space

reduction.

Table 2.5: Sample Transaction Database

Transaction A B C D

T1 3 0 2 4

T2 0 4 1 0

T3 4 1 3 1

T4 1 1 0 1

T5 0 6 2 0

Table 2.6: Sample Utility Table

Item A B C D

Profit 5 7 2 1

Consider user-specific threshold, MinUtility = 45 for the sample database mentioned in

Tables 2.5 and 2.6. The utility of itemset X = {A, C, D} is 50, which is more than the

MinUtility. So, X is the high utility itemset. Another itemset Y={C}. Utility of Y is 18 less

than MinUtility. So, Y is not a high utility itemset even if Y is a subset of X. Now consider

itemset P = {A, B, D}. Utility of P is 41 ≤ MinUtility, and a subset of P is Q= {B}, the utility

of Q is 84 ≥ MinUtility. So, P is not a high utility itemset even if it is superset of Q. where

itemset Q is the high utility itemset. So pruning the search space is the challenging task in

HUIM problem.

2.4 Open Issue

Pruning the search space is a complex and expensive task in HUIM because the utility

measure is neither anti-monotonic nor monotonic. The existing methods generate more

Problem Background

17

candidate itemsets, uses inefficient pruning measures. So the current methods for HUIM

suffer from time-consuming operations and high memory requirements. These approaches

employ multiple pruning measures that tend to overestimate, resulting in unnecessary

computations and increased resource usage. Utility list-based HUIM approaches are recent

and outperforming as they do not generate candidate itemsets. However, the performance of

list-based algorithms is limited by the need to perform many expensive utility list join

operations. These join operations contribute to the computational overhead and can affect

the efficiency of the algorithms. Therefore, there is a need to address the computational cost

associated with utility list join operations to improve the performance of list-based HUIM

algorithms. The cost of join operations in utility list-based approaches is directly

proportional to the comparisons needed to find common transactions between the utility lists.

Join count/s and number of comparisons are the challenges to decreasing the cost of the

utility list join operations. Hence, reducing join count/s and number of comparisons will

enhance the performance of the mining algorithm in execution time and memory

consumption.

Literature Survey

18

CHAPTER-3

Literature Survey

3.1 Introduction

Identifying high utility itemsets in transaction datasets is a formidable task, even with

continuous advancements over the past two decades. Figure 3.1 depicts the publication

trends of different approaches for HUIM from 2001 to 2022. The publication data is

collected from Google Scholar, using the search query 'high utility itemset mining'. From

the statistics, it has been observed that HUIM is the latest topic in the research community,

as discovering the utility-oriented pattern is cost consuming task.

Figure 3.1: Publication trend of HUIM

Several Approaches for HUIM have been suggested using various mining ideologies, data

structures, search space exploration, and pruning techniques. Existing HUIM algorithms are

broadly classified into three categories based on various mining techniques and data

structures.

Literature Survey

19

1) Candidate generation and test-based approaches (Apriori-based)

2) Tree-based approaches

3) Utility list-based approaches

Figure 3.2: Classification of HUIM approaches

3.2 Candidate generation and test-based approach (Apriori based)

In 1994, Shrikant and Agrawal introduced the widely acknowledged downward closure

principle, called the apriori property[7]. It states that any superset of non-frequent itemset is

non-frequent and any subset of frequent itemset is also frequent. It is very effective to reduce

the search space. Candidate sets generation is the core of these apriori-based HUIM

approaches. It performs join and prune operations. In the join operation, it generates the k-

itemsets from the high utility (k-1)-itemsets. In the prune operation, it discards some of the

low utility itemsets based on the utility upper bound, hence reducing the size of candidate

sets.

In the year 2002, Shen, Zhang, and Yang introduced an innovative approach to utility

mining, explicitly focusing on user-specified objectives[41]. Authors incorporate utility

Literature Survey

20

constraints into traditional association rule mining framework. This approach aims to model

association patterns that are in accordance with user-defined objectives and utility

requirements. In this methodology, a collection of itemsets is generated using the established

Apriori algorithm, ensuring that they satisfy the minimum support requirement. Following

this, a pruning process is applied to the association rules, guided by user-defined constraints

and utility thresholds. Any rule that fails to align with the user's objectives or does not meet

the minimum utility threshold are systematically removed. The utility constraint for OOA

(Objective-Oriented Association) rules does not exhibit a monotone or anti-monotone

behavior. So, it is important to highlight that the OOA rules do not adhere to a monotonic or

anti-monotonic pattern, which can result in removing certain high utility items. Chan et al.

initially introduced the utility mining concept and put forward an objective-driven mining

algorithm for discovering the top-k closed-utility patterns in the year 2003[42].

In 2004, Y. D. Shen, Z. Zhang, and Q. Yang introduced a theoretical model for high utility

itemset[11]. This model defined two key properties: utility bound and support bound, which

were aimed at sinking the search space. To complement this, a theoretical framework, a

heuristic-based model, has been designed to estimate the utility of k-itemsets based on the

utility values of (k-1)-itemsets. While the authors initially proposed a theoretical model and

provided theoretical proof, it is imperative to validate its practical applicability on real

datasets. The pruning technique employed in this model relies on the utility bound and item

support bound, which tend to overestimate. It fails to preserve the downward closure

properties. Consequently, the derived results from the estimations may be incomplete.

In 2005, Yao and Hamilton introduced a pair of algorithms for HUIM, denoted as UMining

and UMining_H[43]. Both algorithms follow a level-wise approach for generating and

testing candidate itemsets. They extensively delve into various mathematical properties to

devise effective pruning methods aimed at reducing the candidate itemsets for the

subsequent levels. UMining incorporates innovative pruning techniques based on the utility

upper bound property. This property implies that the utility value of a k-itemset is bounded

by the utility values of all its subsets with a size of k-1.

In contrast, UMining_H relies on heuristic pruning strategies grounded in the expected

utility upper bound property. While UMining ensures the discovery of all high utility

itemsets, UMining_H overlooks certain high utility itemsets due to its reliance on expected

Literature Survey

21

utility, potentially leading to the removal of some valuable itemsets. These two algorithms

were tested using a database containing 8 million records and 2238 unique items. It's

important to note that these pruning strategies may not be entirely efficient, as they do not

adhere to the downward closure property.

In 2005, Liu, Liao, and Chaudhary addressed the challenge presented by utility measures

that do not adhere to the downward closure property by introducing a Two-Phase

algorithm[44]. This algorithm employs pruning techniques based on TWU (Transaction

Weighted Utility), which demonstrates anti-monotonic behavior. Specifically, it establishes

that an itemset's utility falls below the MinUtility threshold if the transaction-weighted utility

of its subset is below this threshold. This approach proves to be an effective way to reduce

the search space.

During the initial phase of the algorithm, it identifies candidate itemsets with transaction-

weighted utility equal to or exceeding the MinUtility threshold. It prunes the search space

using the TWDC (Transaction Weighted Downward Closure) property. It begins by

discovering all high transaction-weighted utility 1-itemsets and progressively generates k-

candidate HTWU (High Transaction Weighted Utility) itemsets from the (k-1) candidate

itemsets. The algorithm evaluates the TWU value of these candidate itemsets by scanning

the database and performing pruning at each iteration.

In the second phase, the algorithm calculates the actual utility of each candidate itemset and

identifies the high utility itemsets. However, a notable limitation of the Two-Phase algorithm

is that it generates candidate k-itemsets by combining (k-1)-itemsets, potentially introducing

patterns that do not actually exist in the database. Consequently, a significant amount of

processing time is required for candidate itemsets, even the itemsets not exist in the database.

Additionally, for calculating the TWU in each iteration, the algorithm frequently scans the

entire database. Furthermore, it stores all candidate itemsets in memory before executing the

second phase. Since TWU is not a tight bound of utility measure, the Two-Phase algorithm

generates a more candidate sets, even when only a few high utility itemsets are present in

the database.

The problem of itemset sharing mining[45] can be transformed into a utility mining problem

by substituting the item’s frequency with its profit value. In 2008, Li, Yeh, and Chang

introduced strategies[46] for removing isolated items to diminish the candidate set size

during the mining process at each level. With each pass, these IIDS (Isolated Item Discarding

Literature Survey

22

Strategies) involve scanning a dataset that is smaller than the original one by omitting the

isolated items. This approach entails scanning the database at each level while progressively

reducing its size, ultimately enhancing the efficiency of the multiple-pass, level-wise

candidate generation method. DCG (Direct Candidates Generation)+ [46] and FUM (Fast

Utility Mining) were further developed by applying IIDS strategies to DCG and

FhFSM[45]. The performance of the DCG+ and FUM is better than the two-Phase, UMining,

UMining_H, and MEU. Nevertheless, both methods still face the challenge of generating

and evaluating candidates in a level-wise manner, necessitating multiple scans of the

database.

Table 3.1: Summary of apriori based approaches for HUIM

Sr.
No

Algorithm
Name

Key points Pros Cons

1 OOApriori Enhances the
association rule
mining considering
the user objectives
and utility

It considers the
user objectives so it
generates more
useful patterns

Pruning using the
OOA rules that are
neither monotonic nor
anti monotonic may
miss useful patterns.

2 MEU The definition of
high utility itemset
mining was
proposed first time.
It designs the
model to calculate
the expected utility
using item support
bound and utility
upper bound.

It considers both
purchase quantities
and unit profit of
the item.

It cannot maintain
downward closure
property.
Complete results are
not derived.
The proposed model
is only theoretical.

3 UMining and
UMining_H

uses several
mathematical
properties of utility
measure to prune
the search space

UMining uses the
utility upper bound
and UMining_H
utilizes a heuristic
pruning strategy

It generates a large
amount of candidate
Patterns and suffers
from excessive
candidate generations.
Introducing poor
scalability

Literature Survey

23

4 Two-Phase Proposes TWDC
property to
discover HUIs in
two phases.

It solves the
problem of
complex pruning
methods required
for HUIM problem
as utility measure
do not support
downward closure
property.
It can significantly

prune huge
candidate patterns.

It uses a TWU for
pruning, which is also
an overestimation.
It requires level-wise

candidate generation
and testing. It also
scans the dataset
multiple times.

5 IIDS It identifies and
discards the
isolated items that
will not be a part of
HUI.

In level-wise
candidate
generation, it
gradually reduces
the database by
applying an item
discarding strategy
to improve
algorithm's
performance.

It requires level wise
candidate generation
and testing with
multiple database
scans.

 Summary of Candidate generation and test-based approaches (Apriori based)

Apriori-based approaches generate a candidate set level-wise and prune itemsets based on

various measures like TWU, Utility upper bound, expected utility, etc. First, they create a 1-

itemset and test if it is high utility itemset or not. Also, perform pruning based on various

measures. Then, it generates the candidate sets of 2-itemset by combining the 1-itemsets.

Again, it performs the pruning and discovers the high utility itemsets. Recursively, it

generates the candidate set of k-itemsets by combining the (k-1) itemsets. Performs pruning

and discovers the high utility k-itemset. The main drawback of these approaches is they scan

the database multiple times. It generates a huge amount of candidate itemsets as it relies on

the loose upper bound for pruning. It also generates some patterns that are not present in the

database, so it wastes time for processing these patterns. Large memory is needed to maintain

the vast number of candidate itemsets, making the algorithm inefficient.

3.3 Tree based approaches

The apriori approach has significant drawbacks despite its effectiveness in HUIM. These

limitations encompass generating an excessive number of candidates, the requirement for

Literature Survey

24

repetitive database scans, and a relatively slow execution speed. To overcome these

constraints, researchers have formulated tree-based HUIM algorithms. These tree-based

algorithms typically encompass three fundamental stages:

 Tree Construction: In this initial phase, a specialized tree structure is created.

 Generation of Candidate HUIs: Algorithms are applied to generate a set of

candidate HUI (High Utility Itemsets) from the tree.

 HUI Identification: From the pool of generated candidates, the genuine high utility

itemsets are discerned.

These tree-based HUIM algorithms aim to rectify the limitations associated with the apriori

method, offering more efficient and effective approaches for mining high utility itemsets.

Hu et al. in 2007, introduced an approximation technique designed to fix the effect of

objective function, predefined utility, and performance metrics, leveraging item

attributes[47]. This method identifies high-utility combinations and subsequently identifies

HUIs by employing a HYP (High-Yield Partition) tree. Unlike the traditional techniques

used in ARM (Association Rule Mining), this approach is specifically designed for

pinpointing particular data segments and combinations of items/rules that adhere to specific

conditions for maximizing a previously defined objective function. Unlike to earlier UPM

(Utility Pattern Mining) methods, it places a significant emphasis on "rule discovery" in

relation to individual attributes and, the overall criteria guiding to discover the results. Its

core objective is to mine the sets of patterns and rules/items combinations that yield the most

substantial contribution to achieve a previously defined objective function[47].

Ahmed et al. introduced an innovative tree-based algorithm named HUC-Prune (High-

Utility Candidate Prune)[48]. The suggested HUC tree is a prefix tree designed to hold

candidate items sorted in TWU descending order. Each node within the HUC tree includes

the item's name along with its corresponding TWU value. HUC-Prune replaces the

traditional level-wise candidate generation process with a pattern-growth mining approach,

same as the IHUP (Incremental High Utility Pattern) algorithm[49]. This approach scans the

database a maximum of three times for find out the HUIs and demonstrates superior

performance compared to apriori-based algorithms.

Literature Survey

25

The IHUP algorithm[49], equipped with three distinct tree structures, namely IHUPTF-tree,

IHUPPL-tree, and IHUPTWU-tree, was introduced to facilitate the mining of high-utility

patterns in an incremental and interactive fashion. The node of the IHUP Tree represent the

itemset. The node includes basic information of the itemset, like name, support count, and

TWU. This algorithm works in three phases 1) building the IHUP-Tree 2) generating

HTWUIs, and 3) discovering the HUIs. The process of creating the IHUP-Tree is the same

as the building of FP-Tree[50]. For constructing the IHUP-Tree, the set of HTWUI1 is

arranged in TWU descending order in each transaction, and then the transaction is added to

the IHUP-Tree. Then, from the IHUP-Tree, all the HTWUIk are derived according to the FP-

Growth approach in step 2. In the final step from HTWUIk, all the HUIs are identified by

rereading the database. Thus, IHUP avoids the candidate itemset generation. Even though

the IHUP has a better performance compared to IIDS and Two-Phase, it produces a huge

number of HTWUI in step 1. It also uses the overestimated utility TWU, limiting the IHUP’s

performance in terms of execution time and memory consumption.

In 2010, Tseng et al. were inspired by the frequency-based FP-Growth algorithm. Authors

proposed UP-Tree (Utility Pattern Tree), a compressed tree structure, and a familiar

algorithm called UP-Growth (Utility Pattern growth)[51] to discover all HUIs efficiently.

UP-Growth incorporates four novel strategies, namely (1) DLN (Decreasing Local Node

utilities), (2) DLU (Discarding Local Unpromising items), (3) DGN (Decreasing Global

Node utilities during the construction of a global UP-tree), and (4) DGU (Discarding Global

Unpromising items during the construction of a global UP-tree). The UP-Tree is generated

after scanning the database twice. The transaction utility of each transaction and TWU of

individual items are calculated. The unpromising items whose TWU is not satisfied the

MinUtility threshold are eliminated. Then, the remaining promising items are arranged in

TWU descending order in the transactions. The database is scanned again to add the

transactions in UP-Tree according to the DGN and DGU strategies. According to DLU and

DLN strategies, the PHUIs (Potential High Utility Itemsets) are generated from UP-Tree. In

brief, the UP-Growth framework comprises three main steps:

(1) Scan the database two times to build a global UP-tree, employing the DLU and DLN

strategies. (2) Iteratively produce PHUIs (Potential High Utility Itemsets) from both the

global UP-tree and local UP-trees using UP-Growth and applying the DGU and DGN

strategies. (3) Determine the ultimate HUIs from the pool of PHUIs. UP-Growth uses the

minimum item utility upper bound to generate PHUIs, which is an overestimation.

Literature Survey

26

In 2013, an enhanced version of the UP-Growth, namely UP-Growth+[52] is proposed by

Tseng et al. To reduce the overestimation, it uses minimal node utility in each path of the

UP-Tree. Compared to UP-Growth, the UP-Growth+ minimizes the number of PHUIs.

Later, in 2013, Song et al. introduced a CHUI-Mine (Concurrent High Utility Itemset

Mining) algorithm to find out HUIs by pruning the CHUI-Tree dynamically. For capturing

the utility information of the candidate itemset, the author introduced a tree structure called

CHUI-Tree. The tree construction process uses dynamic pruning on CHUI-Tree to record

the changes in the support count of candidate itemsets. CHUI-Mine employs a concurrent

approach, allowing the simultaneous generation of a CHUI tree and the mining of HUIs. As

a result, it mitigates the challenge of extensive memory usage typically associated with tree

construction and traversal in tree-based HUIM (High Utility Itemset Mining) algorithms.

Thorough experimentation has proven that CHUI-Mine surpasses Two-Phase[44] and HUC-

Prune[48] not only in efficiency but also in scalability.

Previous tree-based HUIM algorithms suffered from time-consuming tree construction,

including multiple scanning of the database, and overestimation utility measure generates a

huge number of PHUIs. To deal with these issues in 2016, H Ryang et al. developed a novel

tree structure called SIQ-Tree (Sum of Item Quantities) to store database information in a

single scan[53]. This efficient approach constructs the initial SIQ tree by scanning the

database once. The author also proposed a restructuring method using two novel strategies

to reduce the overestimation through which a lower number of candidate patterns are

generated. Hence, it improves the mining performance.

 Summary of Tree-based approaches

The comparative summary of tree-based HUIM approaches is represented in Table 3.2

Table 3.2: Summary of tree-based approaches for HUIM

Sr.
No

Algorithm
Name

Key points Pros Cons

1 HYP-Tree An approximation
method discerns the
contribution of utility.

It is capable of
identifying data
segments using
combinations of a
small number of
items or rules.

Generate huge HYP
tree, and it consumes
more memory

Literature Survey

27

2 HUC-Prune The HUC-tree
structure is a prefix
tree which stores the
items in TWU
descending order

It replaces the level-
wise candidate
generation process
by a pattern-growth
mining approach.

The upper bound is
high, and the
generated tree is
huge.

3 UP-Growth Pattern growth
algorithm uses the
DGU, DGN, DLU,
DLN to decrease the
overestimation utility

UP-tree is more
compact than IHUP-
tree, and the strategy
is powerful to reduce
the number of
candidates.

It is time-consuming
to process all
conditional prefix
trees to generate
candidates
recursively.

4 UP-Growth+ An improved version
of UP-Growth which
employ two pruning
strategies.

The enhanced UP-
Growth+ can
decrease the
overestimated
utilities of PHUIs
and significantly
decreases the
candidates.

It is time-consuming
to recursively
process all
conditional prefix
trees.

5 CHUI-Mine Concurrent High-
Utility Itemset Mine
(CHUI-Mine)
algorithm by
dynamically
pruning the CHUI-tree

It reduces the
storage space by
avoiding the
generation of whole
tree. It dynamically
prunes the subtree
and concurrently
mines the HUI

Recursively process
all conditional prefix
trees is
time-consuming.

6 SIQ Tree Maintain the sum of
the item’s quantity on
the tree. Scan the
database only once.

Constructs the SIQ
tree with a single
scan only and
decreases the
number of candidate
patterns.

It process all
conditional prefix
trees recursively so,
it is time-consuming.

Typically, the tree-based algorithms use different tree construction methods and pattern

growth approaches to mine the HUIs in three steps.

1) Scan the database one or more times to construct the initial tree. Restructure the tree

using various methods to compact it.

2) Apply the various designed pattern-growth approaches to identify the candidate HUIs.

3) From the candidate itemsets, identified the HUIs.

While the tree structure is compact, it may not consistently be minimal and could occupy a

considerable amount of memory space. The effectiveness of these mining algorithms is

closely linked to two pivotal factors.

Literature Survey

28

 The Number of Conditional Trees: The more conditional trees constructed during

the mining process greatly impact on mining performance.

 Construction/Traversal Cost: The cost associated with constructing and traversing

each conditional tree also plays a crucial role in determining mining performance.

These algorithms generates a numerous conditional trees for the huge database and low

MinUtility threshold; there are challenges related to traversal cost and storage for conditional

trees. So the conditional trees generation is the major performance bottlenecks of these

algorithms, which results in high memory consumption and execution time. These tree-based

approaches offer several advantages, as mentioned below:

 Fewer Passes over the Dataset: They require only two to three times database scan.

 Data Compression: These techniques effectively compress datasets into a tree

structure.

 Improved Speed: These techniques are required considerably lower execution time

than apriori-like approaches.

However, these tree-based approaches for HUIM have certain limitations:

 Memory Constraints: The generated tree may be too large to fit into memory.

 Costly Tree Construction: Building the tree can be resource-intensive.

 Time-Consuming: These tree-based approaches required more time to process all

conditional prefix trees recursively.

 Sensitivity to Parameters: The MinUtility parameter is also affect the algorithm’s

performance.

3.4 List based approaches

In pursuit of greater efficiency compared to both apriori-based and tree-based methods,

researchers have introduced an innovative data structure the "utility list" to manage item

utility information. These approaches, which leverage utility lists, work in a single phase.

They address the limitations of apriori-based and tree-based techniques.

Literature Survey

29

3.4.1 HUI-Miner[54]

In 2012, Liu and Qu introduced the first single-phase high utility itemset mining approach,

namely HUI-Miner. It eliminates the need of candidate generation. This breakthrough not

only reduced mining time but also addressed the significant challenge of candidate

generation that was prevalent in earlier apriori-based and tree-based approaches. Their

innovation includes introducing a novel data structure called the "utility list," designed to

store essential utility information of itemsets. Furthermore, to avoid the time-consuming

process of mining HUIs, the algorithm employed an efficient pruning technique utilize the

total of item’s utility and the remaining utility. Novel utility list structure is a triplet <TRid,

iutility, rutility> where TRid represents the transaction ID of the transaction containing the

itemset, iutility is the itemset’s utility, rutility is the heuristic information that stores the

utility value of the remaining itemset in the transaction.

 Initial Utility List

The process of HUI-Miner begins with creating the Initial Utility List, which involves two-

step database scanning to construct the initial utility list for 1-itemsets.

In the first database scan, the algorithm calculates the TWU for each item. During the second

database scan, items that have a TWU below MinUtility threshold are discarded. The

remaining items are then sorted in ascending order of TWU in each transaction. These

modified transactions are referred to as "revised transactions," and the database itself is

termed a "revised database."

Table 3.3: Sample transaction database

Transaction A B C D E F G
T1 - 1 2 - 1 - -
T2 3 4 - - 2 - 1
T3 1 2 3 4 5 - -
T4 - - - - - 3 1
T5 1 1 - 1 - - -

Table 3.4: Sample utility table

Item A B C D E F G
Profit 5 1 3 4 2 1 2

Table 3.5: Sample revised database

Transaction C D E A B
T1 2 - 1 - 1
T2 - - 2 3 4
T3 3 4 5 1 2
T4 - - - - -
T5 - 1 - 1 1

Literature Survey

30

Consider the sample database mentioned in Tables 3.3 & 3.4, and the user-specified

MinUtility threshold is 40. HUI-Miner scans the database and calculates the TWU of each

item. The items F and G are unpromising as their TWU is lower than the MinUtility

threshold. After discarding unpromising items, HUI-Miner scan the database again, and the

items are arranged in TWU ascending order in each transaction. The TWU ascending order

of the items mentioned in the example is C-D-E-A-B, as denoted in Table 3.5.

Definition 3.1: The itemset x exist in the transaction T, the set of all items which is successor

of itemset X in the Transaction T is denoted as T|X.

For example, T3|CE = {AB} and T2|E = {AB}.

Definition 3.2: Remaining Utility

For the transaction T and itemset X, where X is exist in the T. The remaining utility of an
itemset X is the total utility of all the item's utility in T|X, and it is denoted as rutility(X,T).

(,) = (,)∈ (|) (3.1)
Where X⊆ T, the set of all the items, comes after itemset X in the transaction, and it is
represented as T | X.

For example rutility(CD,T3) = 17 and rutility(E,T2)=19.

During the second time database scanning, HUI-Miner constructs the initial utility lists of

all promising 1-itemsets which are represented in Table 3.6. The basic element of the utility

list is the triplet <TRid, iutility, rutility > where TRid is a transaction identification number

of the transaction which contains the itemset, iutility is the itemset utility in the transaction,

and rutility is the remaining utility of the itemset in the transaction. For example, consider

itemset E; three elements are added to the utility list of itemset E as three transactions T1,

T2, and T3 contain itemset E. Utility of E in T1 is the u(E,T1) = 2, and the remaining utility

of E in T1 is u(B, T1)=1 so the element <T1, 2, 1> is added in the utility list. Similarly,

<T2,4,19> and <T3, 10, 7> are added to the utility list of 1-itemset E.

Table 3.6: Initial utility list of 1-itemset
{C}

TRid iutility rutility
T1 6 3
T3 9 33

{D}
TRid iutility rutility
T3 16 17
T5 4 6

{E}
TRid iutility rutility
T1 2 1
T2 4 19
T3 10 7

Literature Survey

31

{A}
TRid iutility rutility
T2 15 4
T3 5 2
T5 5 1

{B}
TRid iutility rutility
T1 1 0
T2 4 0
T3 2 0
T5 1 0

 Utility list of 2-itemset

The utility lists of two 1-itemsets are joined to create a utility list of 2-itemset without

scanning the dataset. The utility list join operation identifies common transactions from both

the utility lists and adds the elements < TRid, iutility, rutility> where TRid is the common

transaction ID, iutility is the summation of utility of two items in the common transaction,

and rutility is the rutility values of the successor item as per total order. i.e., the utility list

of 2-item set {CD} is constructed to find out the common transaction T3 from the utility

lists of {C} and {D}. Add the element in the utility list of {CD} as TRid is T3, set the iutility

value is a 25, it is the sum of iutility values from the utility list of {C} and {D}, and the

rutility value is 17 as rutility value of {D} because D comes after {C} as per TWU ascending

order. Table 3.7 shows the utility lists of 2-itemsets

Table 3.7: Utility list of 2-itemset
{CD}

TRid iutility rutility
T3 25 17

{CE}
TRid iutility rutility
T1 8 1
T3 19 7

{CA}
TRid iutility rutility
T3 14 2

{CB}
TRid iutility rutility
T1 7 0
T3 11 0

 Utility list of k-itemset

The utility list of k-itemset (i1 i2 i3 …. ik) denoted as itemset Pxy can be constructed by

performing join operation on two utility lists of (k-1)-itemset denoted as Px and Py. It

conducts the join operation the same as generating the utility list of 2-itemset. It calculates

the iutility value of an element as u(Pxy,T) = u(Px,T) + u(Py,T) - u(P, T). As the itemset Px

and Py are the extension of itemset P, the utility of the P is accommodated in both the utility

of Px and Py, so the utility of P is subtracted from the equation. The rutility value is set as

rutility value of Py. For example, in the construction of the {CDE}’s utility list, the element

Literature Survey

32

<T3, 35, 7> can be added to the itemset {CDE}’s utility list. Similarly, all the elements are

added to the utility list of {CDE}.

 Search space and Pruning

The search space of the HUI-miner is visualized as a set enumeration tree. Within this tree

structure, an itemset is referred to as an extension of the itemset represented by its parent

node. Specifically, an itemset labeled as (k+i) signifies an i-extension of the itemset labeled

as k, and it is positioned in the tree as a descendant of its ancestor node. For example, in

Figure 3.3, itemsets {CDE} and {CDA} are the 1-extensions of {CD} while {CDEA} is

the 2-extension of {CD}.

HUI Miner algorithm starts from the root node to construct itemset and check all its 1-

extensions. Then, it recursively creates the promising extension of itemsets, applying the

joining of utility lists and pruning strategies. If the sum of iutility and rutility values in the

utility list of an itemset is less than MinUtility threshold, then it is pruned. The itemset cannot

be further extended as it is an unpromising itemset.

Figure 3.3: Set enumeration tree

Property 3.1: Consider the X’ is the extension of itemset X then (X’ –X) = (X / X’)

Rationale: The itemset X is combined with the item(s) after X according to total order is the

extension of X called X’

Lemma 3.1: Consider the itemset X, the total of iutility and rutility values of all elements in

the utility list of X is lesser than MinUtility threshold, then X’ an extension of X is not a high

utility itemset [54].

Literature Survey

33

i.e. consider the utility list of itemset {CE} sum of all iutility and rutility from its utility list

is 35, which is less than MinUtility (40), so it is pruned because any extension of {CE} does

not become a high utility itemset.

In general, HUI-Miner discovers the HUI sets without generating the candidate itemsets. It

performs the pruning based on sum of iutility and rutility, which is a little tighter compared

to TWU. The main limitation is that it performs the unnecessary costly utility list join

operations for the itemsets that do not exist in the dataset. It also performs the join operations

for the low-utility itemsets.

3.4.2 mHUI-Miner[55]

In 2017, Peng, koh, and Riddle proposed a tree structure to avoid the generation of utility

lists of the itemsets that do not exist in the database. The HUI Miner[54] and FHM[56]

explore the search space using a set enumeration tree and construct the utility list of some

itemsets which does not exist in the database due to that these algorithms are somewhat

inefficient. The modified HUI-Miner incorporates a tree structure called IHUP to HUI-

Miner. According to the property of the IHUP Tree Structure, the pathway of the tree shows

the transactions in the database, so all the information about the items is stored in the tree

together. This information helps to identify the itemsets or patterns that are present in the

database. Therefore, by gradually extracting itemsets along the tree's pathways, we can

prevent the expansion of current itemsets into ones that are not present in the database.

The algorithm scans the database to calculate the TWU of each individual item and to discard

unpromising items according to TWDC property. It examines the database again to construct

a global IHUP Tree, header table, and utility list of each promising item. During the tree

construction, the items are read from the transaction in TWU descending order, and the path

is added in the tree. The header table contains the promising items and TWU values. The

items in the header table are arrange in TWU descending order. The main purpose of the

IHUP tree is to guide the expansion process of itemsets. Consider the database presented in

Tables 3.3 & 3.4. mHUIMiner scans the database two times and constructs global IHUP

Tree and Utility lists, as demonstrated in Figure 3.4.

Literature Survey

34

Item TWU
B 86
A 77
E 76
D 52
C 51

Figure 3.4: Global IHUP Tree

It recursively performs the mining procedure, selecting the item from the bottom of the

header table. If the sum of the iutility and rutility is higher than the MinUtility value, then it

constructs a local prefix tree. Considering item C, sum of iutility and rutility is 51, which is

greater than MinUtility threshold i.e., 40 from its utility list, so creates a local prefix tree and

header table of item C as presented in Figure 3.5, and calls the mining algorithm for that

itemset p. Here the mining algorithm is a call for itemset p = { C }.

Item TWU
b 86
a 77
e 76
d 52

Figure 3.5: Local Prefix Tree for Tc

Header Table

Item TWU

b 86
a 77
e 76
d 52

ULcd
Tid Iutil Rutil
T3 25 17

Utility-List

Figure 3.6: Local Prefix Tree for Tcd

Literature Survey

35

The mining algorithm checks the sum of iutility value from the utility list of item set p. If it

is not less than MinUtility value, then the itemset p is added to the High Utility Itemset, and

check the sum of iutility and rutility values to further explore the itemset p. Here for itemset

p={C} the sum of iutility and rutility value is 41, so it is further explored with selecting the

item x={D} from the bottom of its header table. Create a local prefix tree Tpx = TCD is shown

in Figure 3.6, and a utility list of itemset px = {CD} by joining the utility lists of two itemsets

according to HUI-Miner algorithm. The mHUI-Miner recursively calls the mining algorithm

to discover all high utility itemsets.

Integrating the IHUP Tree structure to avoid the generation of itemsets that do not exist in

the database can increase the performance of the High Utility itemset mining. It reduces the

number of utility list join operations by guiding the itemset exploration process.

3.4.3 ULB-Miner[57]

In 2017, Duong, Viger, ramampiaro, norvag and dam proposed efficient high utility itemset

mining using a buffered utility list called ULB-Miner. Author proposed a novel list structure

called utility list buffer to store the item utility information and efficient join operation to

generate a segment of itemsets in linear time. The ULB (Utility List Buffer) is based on the

buffering utility information to reduce memory consumption. The ULB structure reuses the

memory of the itemset that will not be further expanded.

 The utility list buffer structure

Definition 3.3: Utility-list buffer structure

Let i ∈ I, set of items I in database D, which consists of set of transactions T. The utility list

buffered structure is denoted as ULBuf, a memory pipeline to store itemset information as

utility lists. The ULBuf holds a set of tuples of the form <TRid, iutility, rutility> where TRid∈ D, iutility ∈ R, and rutility ∈ R, which is called data segments.

The index segments SUL(x) are created to access the information of itemset x stored in the

ULBuf.

Definition 3.4: Summary of Utility List

Consider the database D, and itemset x, SUL(x) is the index segment called a summary of

utility list defined as a tuple (x, StartPos, EndPos, SumIutility, SumRutility) where X is the

Literature Survey

36

itemset, StartPos, and EndPos indicating the respective starting and ending positions of

itemset x within the ULBuf (Utility List Buffer) where utility information is stored.

SumIutility signifies the cumulative sum of utility values for the itemset X, and SumRutility

denotes the total of remaining utility values.

Definition 3.5: Summary List

It the memory pipeline of Sum of Utilty Lists SUL(X) and denoted as SL(D) = {SUL(x),x ⊆ I}

The ULB-Miner algorithm scans the database first and calculates the TWU of all single items

and, discards the unpromising items. During the second database scan, it inserts item utility

information into the ULBuf according to TWU ascending order. It simultaneously records the

summary of the utility list into the summary list. The utility list buffer ULBuf and Summary

list SL of the database shown in Tables 3.3 and 3.4 is presented in Figure 3.7 and 3.8,

respectively.

TRid 1 3 3 5 1 2 3 2 3 5 1 2 3 5
iutility 6 9 16 4 2 4 10 15 5 5 1 4 2 1
rutility 3 33 17 6 1 19 7 4 2 1 0 0 0 0

Figure 3.7: Utility list buffer for single items

Figure 3.8: Summary of utility list for single items

The search procedure explores the search space from item {C}. It checks its iutility value; if

it is higher than the MinUtility then it adds item {C} into HUI sets. It extends the item {C}

by adding item {D} if the sum of iutility and rutility of {C} is no less than MinUtility. Then,

it creates segments to store utility information of itemset {CD} joining segments of {C} and

{D}. The procedure inserts these segments into the ULBuf and maintains its summary in the

summary list. Utility list buffer after inserting itemset {CD} and SL is demonstrated in

Figure 3.9 and Figure 3.10 respectively. The sum of iutility and rutility value 42 is greater

than MinUtility (i.e. 40), so it considers a candidate to extend the search space. Next, the

item {E} is appended to itemset {C} to generate itemset {CE}. The utility information of

itemset {CE} is inserted into the ULBuf at positions 15 to 17, and an appropriate entry for

{CE} is created into the summary list. The sum of iutility and rutility value of {CE} is 35 <

SL=

Item=C
StartPos=0
EndPos=2
SumIutility=15
SumRutility=36

Item=D
StartPos=2
EndPos=4
SumIutility=20
SumRutility=23

Item=E
StartPos=4
EndPos=7
SumIutility=16
SumRutility=27

Item=A
StartPos=7
EndPos=10
SumIutility=25
SumRutility=7

Item=B
StartPos=10
EndPos=14
SumIutility=8
SumRutility=0

Literature Survey

37

MinUtility. Thus, the entry of {CE} in ULBuf and SL is cleared to further utilize the memory

for another itemset. In the same way, items A and B are appended to item C, and the utility

information of CA and CB is inserted into ULBuf and SL, respectively. The below Figures

3.9 and 3.10 represent the ULbuf and SL after proceeding with the itemset {CD}. Similarly,

after proceeding with the itemset {CA}, the ULbuf and SL are shown in Figures 3.11 and

3.12.

TRid 1 3 3 5 1 2 3 2 3 5 1 2 3 5 3
iutility 6 9 16 4 2 4 10 15 5 5 1 4 2 1 25
rutility 3 33 17 6 1 19 7 4 2 1 0 0 0 0 17

Figure 3.9: Utility list buffer after inserting itemset {CD}

Item=C
StartPos=0
EndPos=2
SumIutility=15
SumRutility=36

Item=D
StartPos=2
EndPos=4
SumIutility =20
SumRutility=23

Item=E
StartPos=4
EndPos=7
SumIutility=16
SumRutility=27

Item=A
StartPos=7
EndPos=10
SumIutility=25
SumRutility=7

Item=B
StartPos=10
EndPos=14
SumIutility=8
SumRutility=0

Item=CD
StartPos=14
EndPos=15
SumIutility=25
SumRutility=17

Figure 3.10: Summary of Utility list after inserting itemset {CD}

Figure 3.11: Utility list buffer after inserting itemset {CA}

Item=C
StartPos=0
EndPos=2
SumIutility=15
SumRutility=36

Item=D
StartPos=2
EndPos=4
SumIutility=20
SumRutility=23

Item=E
StartPos=4
EndPos=7
SumIutility=16
SumRutility=27

Item=A
StartPos=7
EndPos=10
SumIutility=25
SumRutility=7

Item=B
StartPos=10
EndPos=14
SumIutility=8
SumRutility=0

Item=CD
StartPos=14
EndPos=15
SumIutility=25
SumRutility=17

Item=CA
StartPos=15
EndPos=16
SumIutility=14
SumRutility=2

Figure 3.12: Summary of Utility list after inserting itemset {CA}

TRid 1 3 3 5 1 2 3 2 3 5 1 2 3 5 3 1 3
iutility 6 9 16 4 2 4 10 15 5 5 1 4 2 1 25 7 11
rutility 3 33 17 6 1 19 7 4 2 1 0 0 0 0 17 0 0

Figure 3.13: Utility list buffer after inserting itemset {CB}

TRid 1 3 3 5 1 2 3 2 3 5 1 2 3 5 3 3
iutility 6 9 16 4 2 4 10 15 5 5 1 4 2 1 25 14
rutility 3 33 17 6 1 19 7 4 2 1 0 0 0 0 17 2

Literature Survey

38

Figure 3.14: Summary of Utility list after inserting itemset {CA}

The ULB miner recursively expands the itemset and discovers the HUIs. It also efficiently

joins segments of utility lists in ULBuf in linear time. For joining the utility list, it finds the

common transaction from both utility lists.

In general, ULB-Miner efficiently utilizes the memory as it removes the itemset’s utility list

from the memory that is not further expanded according to the pruning policy. The other

itemsets will utilize the memory space. The previous approaches store utility lists of all

generated itemsets into the memory, even the itemsets are neither further extended nor high

utility itemsets. ULB-Miner also performs the efficient join operation.

3.4.4 HUI-Miner*[58]

In 2019, Qu, Liu, and Viger proposed a HUI-Miner* to improve the performance of HUI-

Miner by proposing a new structure called Utility-List*. It has been observed that in HUI-

Miner, the utility list of k-itemsets is constructed using the TRid comparisons of both utility

lists of (k-1)-itemsets, but all the TRid comparisons are not effective. The effective

comparisons are matching of the TRid. The ineffective comparison leads to degrade the

performance of the algorithm. The HUI-Miner* removes these ineffective comparisons by

Utiliiy-list* structure. The construction of Utility-List* is faster. The mining procedure of

the HUI-Miner* is the same as the HUI-Miner. HUI-Miner* uses the Utility List* structure

to store the utility information, and Utility List* is constructed horizontally. The elements

belonging to similar transactions in the utility list* of different itemsets are linked together,

so it helps to remove the ineffective comparisons. Hence, it improves the mining

performance.

Item=C
StartPos=0
EndPos=2
SumIutility=15
SumRutility=36

Item=D
StartPos=2
EndPos=4
SumIutility=20
SumRutility=23

Item=E
StartPos=4
EndPos=7
SumIutility=16
SumRutility=27

Item=A
StartPos=7
EndPos=10
SumIutility =25
SumRutility =7

Item=B
StartPos=10
EndPos=14
SumIutility =8
SumRutility=0

Item=CD
StartPos=14
EndPos=15
SumIutility=25
SumRutility
=17

Item=CB
StartPos=15
EndPos=17
SumIutility =18
SumRutility =0

Literature Survey

39

3.4.5 UBP-Miner[59]

In 2022, Peng Wu et al. proposed a novel bitwise operation, namely BEO (Bit mErge

cOnstruction), for faster construction of utility list. It proposed a bit utility list for each

itemset to maintain the information for an itemset that exists in the transaction. Unlike the

conventional HUIM approaches, this algorithm performs faster utility list join operation by

directly merging the bit utility lists of two itemset rather than searching the common

transactions. Despite fast utility list construction, it requires extra memory to store the

transaction bit and the mapping information of the TRids into the bit utility list. The bitset

storing the transaction bit is maintained in the array due to variable-sized modern computer

architecture that is time-consuming.

Table 3.8: Summary of utility list-based approaches for HUIM

Sr.
No

Algorithm
Name

Key points Pros Cons

1 HUI-Miner Generates the itemsets
by recursively
exploring the search
space. Creates a utility
list of k-itemset by
joining the utility lists
of (k-1)-itemsets

One phase
does not generate
the candidate sets

Perform costly
utility list Join
operations.
Constructs the
utility lists of
itemsets, which are
not exist in the
database.

2 mHUI-
Miner

Explores the search
space using the IHUP
Tree.

Creates utility lists
of only those
itemsets that are
available in the
database.

Consume more
memory to
maintain sub-trees.
It also takes more
time to traverse the
tree recursively.

3 ULB-Miner Discards the
unpromising itemset.
Store the utility
information into ULBuf .

Memory efficient.
Efficiently
performs utility list
join operation.

The utility list
construction
process is
complicated. It
performs costly
utility list join
operations.

Literature Survey

40

4 HUI-
Miner*

Horizontally constructs
the Utility-List* of
Item-Set.
Elements of the
itemsets associated with
a transaction are linked
together

Fast Utility list join
operation due to
effective
comparison

Increases the
running time for
the large linked list

5 ULB-Miner Uses the bit utility list.
Constructs the utility
list, merging the bit
utility lists

The utility list
construction
process is faster.

Requires extra
memory to store
the transaction bit
and mapping
information of the
TRids into the bit
utility list

 Summary of utility list-based approaches

The utility list-based approaches for HUIM are recent and efficient in terms of execution

time and memory utilization. Unlike the pattern growth and apriori-based approaches, these

algorithms do not generate the candidate itemsets. The utility list stores the utility

information and the search space is maintained in the set enumeration tree. They recursively

expand the itemset by exploring the search space and construct the utility list of the

expanded itemset by performing the join operation on the utility lists. Despite the execution

time and memory efficiency, the performance of these algorithms is limited due to a number

of costly utility list join operations. The cost of the join operations depends on the number

of comparisons required to find the common transactions between the utility lists. The cost

also depends on the number of join operations performed.

3.5Research Gap

From the detailed literature survey, it has been identified that utility list-based approaches

are performing better compared to other approaches. The performance of the utility list-

based approaches is limited due to the costly utility list join operations. The performance of

the HUIM algorithms can be improved by

Literature Survey

41

 Utilizing the suitable data structure that can efficiently access and retrieve the utility

information like utility list.

 Exploring the search space in such a way that can reduce the number of join counts

and minimize the cost of the join operation by reducing the number of comparisons.

 Eliminating the unnecessary join operations.

 Utilizing the tight pruning measures that can minimize the candidate sets.

 Reducing the database scanning cost and frequency.

SCAO based Search Space Exploration Technique for HUIM

42

CHAPTER-4

SCAO based Search Space Exploration Technique

for HUIM

4.1 Introduction

Based on a comprehensive review of the literature and an analysis of the problem’s inherent

characteristics, it has been determined that the efficiency of HUIM algorithms primarily

depends on several factors. These factors include the dataset's attributes, strategies for

exploring the search space, the data structure used to store utility information, the pruning

criteria employed, and the mining techniques used. The literature reviews shows that over

the past two decades, many approaches have been proposed for HUIM, utilizing various

combinations of data structures, pruning methods, and mining strategies. Among these, the

more recent utility list-based approaches have demonstrated superior performance in terms

of execution time and memory utilization. However, the performance of the utility list-based

methods is limited because these approaches perform costly utility list join operations. The

cost of the join operations mainly depends on the number of join counts, and number of

comparisons needed to search common transactions between the utility lists.

4.2 Search Space Exploration in HUIM

The search space in HUIM is the all possible itemsets that can be derived from each item in

the transaction database. In simple term, the search space includes all the conceivable

combinations of items known as itemsets, which can be generated from the dataset. HUIM

(High Utility Itemset Mining) algorithms are designed to efficiently explore and traverse this

extensive space to detect high utility itemsets based on predefined utility criteria. The set

enumeration tree is used to represent the search space in HUIM [54]. The empty set {}

represents the root node of the tree. The tree exhibits a hierarchical structure, wherein each

tier of nodes signifies itemsets that grow in size progressively. To illustrate, nodes at the first

level represent a 1-itemset, nodes at the subsequent level signify pairs of items or a 2-itemset,

SCAO based Search Space Exploration Technique for HUIM

43

nodes at the following level indicate triplets, and so forth. For given itemset I = {i1, i2, i3, . .

. in}, and the total order of items from I is {i1< i2< i3< . . . < in}, the set enumeration tree is

built following the given steps: Initially, the empty root node is built. Next, n child nodes

are formed from the root, each representing individual 1-itemsets in that order.

Subsequently, the (n-p) child nodes of the node representing the itemset {ik,…ip} where 1 ≤

k ≤ p < n are created. The child node represents the itemsets {ik,…ip, i(p+1)}, {ik,…ip,

i(p+2)}…….. {ik,…ip, in}. In the same way, recursively each level is constructed till entire leaf

nodes are created. For example, consider the itemset I= {a,b,c,d}, and the total order of the

items is a < b < c < d. The set enumeration tree for the example is shown in Figure 4.1

Figure 4.1: Set Enumeration Tree

The search space exploration is the traverse of the set enumeration tree to construct all

possible itemsets. Search space exploration includes the order in which the nodes are built

and the sequence to traverse the tree. The order is the same as the total order. The total order

may be lexicography order, TWU ascending order, TWU descending order, etc. State-of-

the-art HUIM approaches like HUI-Miner, mHUI-Miner, ULB-Miner, etc., explore the

search space according to TWU ascending order to construct the itemset. Utility list-based

approaches construct the utility list in the sequence same as the search space exploration

sequence. One factor affecting the algorithm’s efficiency is the number of comparisons

required to find the common transactions for the utility list join operation. The search space

exploration method is directed to number of comparisons required to find the common

transactions between the utility lists needed for the join operation. This research work

proposes a support count ascending order search space exploration sequence called SCAO-

SCAO based Search Space Exploration Technique for HUIM

44

based search space exploration. SCAO-based search space exploration method dramatically

reduces the number of comparisons required to join the utility lists.

4.3 SCAO-based search space exploration

The proposed SCAO-based HUIM process model is presented in Figure 4.2. The proposed

approach works in three phases.

Phase 1: Construction of a revised database

Scan the dataset to calculate the TWU and support count for each item. The support count

of the itemset is the number of transactions containing the itemset. Unpromising items with

a TWU lower than the MinUtility threshold are discarded. The database is scanned again to

rearrange all transactions in ascending order based on their support count. The resulting set

of revised transactions is referred to as the revised database. For instance, consider the data

shown in Tables 4.1 and 4.2, with a MinUtility value 40. Items p and q are discarded as TWU

of items fall below the MinUtility threshold. The items in each transaction are then

rearranged in ascending order based on their support count, resulting in revised transactions

such as m-n-o-k-l.

Figure 4.2: Proposed Model of SCAO-based search space exploration technique.

SCAO based Search Space Exploration Technique for HUIM

45

Table 4.1:Sample Transaction Database

Transaction k l m n o p q

T1 - 1 2 - 1 - -

T2 - - - - - 3 1

T3 3 4 - - 2 - 1

T4 1 1 - 1 - - -

T5 1 2 3 4 5 - -

Table 4.2:Sample Utility Table

Item k l m n o p q

Profit 5 1 3 4 2 1 2

Phase 2: Construction of initial utility list

The database is scanned again to create the initial utility list for each promising item. The

utility list of items consists of triplets associated with the transaction containing the item.

Each triplet includes the following information: TRid (Item's transaction ID), iutility (Item's

utility value in a revised transaction), and rutility (Item's remaining utility value) [54][55]

Table 4.3: Utility Lists of 1-Itemset

{m}

TRid iutility rutility

T1 6 3

T5 9 33

{n}

TRid iutility rutility

T4 4 6

T5 16 17

{o}

TRid iutility rutility

T1 2 1

T3 4 19

T5 10 7

{k}

TRid iutility rutility

T3 15 4

T4 5 1

T5 5 2

{l}

TRid iutility rutility

T1 1 0

T3 4 0

T4 1 0

T5 2 0

Definition 4.1: For the itemset X and transaction T, all the items in Transaction T that come

after itemset X where X ⊆ T is denoted as T|X. i.e T5 | mn = {okl} and T3|o = {kl}

SCAO based Search Space Exploration Technique for HUIM

46

Definition 4.2: Remaining utility

The total utility of all the items that follow the itemset X in transaction T is represented as

rutility(X, T). (,) = ∑ (,) ⊆∊(|) (.)
For example, constructing the item o’s utility list in transaction T3, iutility value of o in T3

is 4 and remaining utility rutility value of o in T3 = rutility(o, T3)=u(k, T3) + u(l, T3) =

15+4 =19. Similarly, the initial utility list of all promising items (m, n, o, k, l) is constructed

as shown in Table 4.3.

Phase 3: Search space exploration and mining process

The search space can be represented by a set enumeration tree depicted in Figure 4.3. Once

the initial utility list is created, the proposed technique explores the search space in ascending

order of support count called SCAO (support count ascending order) based search space

exploration technique. It recursively extends the node in the tree representing the (k-1)-

itemsets by combining with its successor node until all possible itemsets are explored.

Pruning is performed based on the sum of iutility and rutility to determine whether the

itemset can be further extended. If the total of iutility and rutility values of all elements from

the itemset’s utility list is higher or equal to the MinUtility threshold, then it can be further

extended; otherwise, the itemset can be discarded. The specific details of the pruning

mechanism are described in section 4.3.2. The utility lists of the k-itemsets are constructed

according to algorithm 2 by joining the utility list of the (k-1)-itemset and the utility list of

its successor item. The details of the utility list join operation can be found in section 4.3.1.

Additionally, the technique simultaneously discovers the high utility itemsets according to

steps defined in the algorithm 1. For the itemset, before further extending the itemset, it is

added to the set of HUIs if its sum of iutility from the utility list is higher or equal to the

user-specified MinUtility threshold.

SCAO based Search Space Exploration Technique for HUIM

47

Figure 4.3: Set enumeration tree of a sample dataset.

4.3.1 A Construction of Utility list of 2-itemset and k-itemset

Consider the 2-itemset x = {mn}. To construct the utility list of itemset x, join operation is

performed on the utility lists of m and n. During the join operation, a common transaction is

searched from both utility lists and the element <TRid, iutility, rutility> is added to the utility

list of {mn}. Here, TRid represents the common transaction ID, iutility represents the sum

of iutility values from utility lists of {m} and {n}, and rutility represents the rutility value

of {n}, as itemset {n} comes after itemset {m} according to SCAO. For example, when

constructing the utility list of {mn}, the utility lists of m and n are joined. There is a common

transaction with ID -T5, and the element <T5, 25, 17> is added to the utility list of {mn}.

Similarly, add all the elements that have common transactions from the utility lists of {m}

and {n} into the utility list of {mn}. Table 4.4 shows the utility lists of 2-itemsets. The utility

list of a k-itemset can be constructed by joining the utility lists of two (k-1)-itemsets.

Performing join operation, the common transactions between two (k-1) itemsets are

identified, and the corresponding elements are added to the utility list of the k-itemset. Tables

4.5 and 4.6 represent the utility list of 3-itemset and 4-itemset, respectively. To identify the

common transactions between utility lists, one needs to perform comparisons between the

elements of the both utility lists. This process constructs utility lists for higher-order itemsets

by leveraging the utility information from smaller itemsets.

SCAO based Search Space Exploration Technique for HUIM

48

Table 4.4: Utility Lists of 2-Itemset

{mn}

TRid iutility rutility

T5 25 17

{mo}

TRid iutility rutility

T1 8 1

T5 19 7

{mk}

TRid iutility rutility

T5 14 2

{ml}

TRid iutility rutility

T1 7 0

T5 11 0

{no}

TRid iutility rutility

T5 26 7

{nk}

TRid iutility rutility

T4 9 1

T5 21 2

Table 4.5: Utility Lists of 3-Itemset

{mno}

TRid iutility rutility

T5 35 7

{mnk}

TRid iutility rutility

T5 30 2

{mnl}

TRid iutility rutility

T5 27 0

Table 4.6: Utility Lists of 4-Itemset

{mnok}

TRid iutility rutility

T5 40 2

{mnol}

TRid iutility rutility

T5 37 0

{mnokl}

TRid iutility rutility

T5 42 0

Algorithm 1:- Mining Algorithm

Input: -LUL - List of UtilityList of 1-itemset

Prev.UL- previous item’s utility list initially it is empty,

MU – User-specific Minimum utility threshold

Output: -high-Utility itemsets

1. For each element K in LUL do

2. If TOTAL of K’s iutility ≥ MinUtility, then

3. Add K & its previous itemsets in the resultset

4. endif

5. If the TOTAL of all K’s iutility & rutility ≥ MU, then

6. Create empty extUL;

7. For each element L follow K in LUL do

8. extUL=extUL+ join(Prev.UL, K, L)

9. endfor

SCAO based Search Space Exploration Technique for HUIM

49

10. Mining(K, extUL, MU)

11. endif

12. Endfor

Algorithm 2:- Join Algorithm

Input: - ULPrev- itemsetPrev ‘s utility list.
ULK– itemset K's utility list,

ULL – itemset L's utility list

Output: - ULKL- itemset KL's utility list.

Initialize ULKL is NULL

foreach component Ek ULK

if ∃ component EL ULL&&Ek.TRid == EL.TRid then

if ULPrev ≠ empty then
Search component EPrev∈ ULPrev have the same Tid

Create new component

Where EkL = <Ek.TRid, Ek.iutility + EL.iutility – Eprev.iutility, EL.rutility>

else

EkL= <Ek.TRid, Ek.iutility+EL.iutility – Eprev.iutility, EL.rutility>

endif

Insert component EkL to ULKL

endif

endfor

return ULKL

4.3.2 Pruning Mechanism

Search space exploration identifies all possible high utility itemsets, but it consumes more

time because datasets have many items. Therefore, it is necessary to trim the search space

by discarding the itemsets that do not contribute to the high utility. Use the itemset’s iutility

and rutility values from the itemset's utility list to narrow the search field. Only the itemset

for which the total of its iutility and rutility values is no less than the MinUtility threshold is

extended further. Otherwise, it can be discarded as per Lemma 1[16] because any of the

superset of such itemset is not a high utility itemset. The total of iutility values from the

itemset’s utility list is the utility of the itemset. The itemset is a high utility itemset if its

utility is no less than the MinUtility criterion.

SCAO based Search Space Exploration Technique for HUIM

50

Lemma 1:- If the sum of all iutility and rutility values from X’s utility list UL(X) is no less

than the MinUtility, any itemset X' that is the extension of itemset X is not a high utility

itemset.

i.e., consider the itemset {mn}’s utility list ULmn, the total of itemset’s iutility and

rutility is 42, which is larger than the MinUtility threshold 40. So, it can be further extended.

While the total of iutility and rutility values of {mo} is 35, it is discarded without further

extension.

4.3.3 Analysis of Proposed Method Vs. State-of-the-art methods

The use of SCAO-based algorithms results in a reduced number of comparisons required to

identify the common transactions between the utility lists for join operations. An analysis of

time complexity reveals that the proposed SCAO-based algorithms require fewer

comparisons when compared to other state-of-the-art methods for joining the utility lists.

Let's consider the utility lists ULa, ULb, and ULc, representing the utility values of 1-itemsets

a, b, and c, respectively. The support counts for these utility lists are denoted as p, q, and r,

respectively, with the condition that p ≥ q ≥ r. Now, for the construction of the utility list of

itemset ab, perform a join operation between ULa and ULb.

Case 1: Consider the order sequence a-b-c that is TWU ascending order of itemset a, b, and

c. Existing state-of-art algorithms explore the search space as TWU ascending order

therefore, they construct the utility lists in sequence as ULab, ULac, and ULabc. Performing

the join operations on ULa and ULb to construct ULab requires qlog2p comparisons. Similarly

for constructing ULac requires rlog2p comparisons. The maximum number of possible entries

in ULab is q, and in ULac is r.

ULabc, Utilitylist of abc constructed by performing join operation on ULab and

ULac. The number of comparisons is rlog2q. Therefore, total number of comparisons required

is qlog2p + rlog2p + rlog2q.

The SCAO-based approach constructs the utility list in the sequence as ULcb, ULca,

and then ULcba because the SCAO sequence is c-b-a. To construct ULcb requires rlog2q, and

to construct ULcarequires rlog2p comparisons. The maximum number of entries in ULcb is r,

and in ULca is also r. To construct the utility list ULcba of itemset cba, number of comparisons

required is rlog2r to join ULcb and ULca. Therefore, the total number of comparisons is rlog2q

SCAO based Search Space Exploration Technique for HUIM

51

+ rlog2p + rlog2r, which is lesser or equal to qlog2p + rlog2p + rlog2q (∵ r ≤ q and r ≤ ptherefore rlog2r ≤ qlog2p).

Case 2: TWU ascending order for itemset a, b and c is a-c-b. Existing state-of-art algorithms

construct the utility lists in sequence as ULac, ULab, and ULacb. So, the total number of

comparisons is rlog2p + qlog2p + rlog2q. While the SCAO-based approach constructs the

utility list in the sequence as ULcb, ULca, and then ULcba, so the total number of comparisons

is rlog2q + rlog2p + rlog2r, which is lesser or equal to rlog2p + qlog2p + rlog2q (∵ r ≤ q and

r ≤ p therefore rlog2r ≤ qlog2p).

Case 3: TWU ascending order for itemset a, b and c is b-a-c. Existing state-of-art algorithms

construct the utility lists in sequence as ULba, ULbc, and ULbac. So the total number of

comparisons is qlog2p + rlog2q + rlog2q. While the proposed SCAO-based approach requires

total rlog2q + rlog2p + rlog2r comparisons, which is lesser or equal to qlog2p + rlog2q + rlog2q

(∵ r ≤ q therefore rlog2p ≤ qlog2p and rlog2r ≤ rlog2q).

Case 4: Consider the order sequence b-c-a presenting TWU ascending order of itemset a, b,

and c. Existing state-of-art algorithms construct the utility lists in sequence as ULbc, ULba,

ULbca. So, the total number of comparisons is rlog2q + qlog2p + rlog2q. While the Proposed

SCAO based approach requires total rlog2q + rlog2p + rlog2r comparisons, which is lesser or

equal to rlog2q + qlog2p + rlog2q (∵r ≤ q therefore rlog2p ≤ qlog2p and rlog2r ≤ rlog2q).

Case 5: Consider the order sequence c-a-b that is TWU ascending order of itemset a, b, and

c. Existing state-of-art algorithms construct the utility lists in sequence as ULca, ULcb, and

ULcab. So, the total numbers of comparisons are rlog2p + rlog2q + rlog2r, which are the same

as the proposed SCAO-based method.

Case 6: TWU ascending order for itemset a, b and c is c-b-a. The proposed SCAO-based

algorithm performs Utility list join sequence in the same order c-b-a. Therefore, the numbers

of comparisons are the same.

From all the above cases, it has been proved that the proposed join sequence as support count

ascending order (SCAO) requires fewer comparisons compared to TWU ascending order.

Hence, it reduces the cost of utility list join operation.

SCAO based Search Space Exploration Technique for HUIM

52

4.4 An illustrative example.

Consider the dataset tabulated in the Table 4.1 and Table 4.2. The user-specified MinUtility

threshold is 40. The proposed SCAO-Based HUIM approach first scans the database and

calculates the item’s support count and TWU of all items, as shown in Table 4.7.

Table 4.7: Support count and TWU of item

Item Support
Count

TWU

k 3 77
l 4 86

m 2 51
n 2 52
o 3 76
p 1 5
q 2 30

Next, it discards the unpromising items; the item’s TWU is less than the MinUtility

threshold. So items p and q are discarded from the dataset and all the transactions are

rearranged in support count ascending order, called the revised transaction. The set of revised

transactions is called the revised dataset. The revised dataset for this example is shown in

Table 4.8. The SCAO of all promising items becomes m-n-o-k-l.

Table 4.8: Revised Transaction dataset

m n o k l
T1 2 0 1 0 1
T2 0 0 0 0 0
T3 0 0 2 3 4
T4 0 1 0 1 1
T5 3 4 5 1 2

By scanning the revised dataset, the initial utility list of each 1-itemset is constructed. The

utility list of each item is shown in Table 4.3. Consider the item as a high utility itemset if

its total utility from its utility list is not less than the MinUtility threshold. Next, it explores

the search space maintained in the set enumeration tree, as shown in Figure 4.3. The itemsets

is generated by extending them with its successor node from the tree in-depth search. So, it

proceeds with the itemsets {m, mn, mno, mnok, mnokl………….} in sequence.

SCAO based Search Space Exploration Technique for HUIM

53

First, it constructs the utility list of itemset {mn} by performing the join operation between

m and n. The utility lists of the 2-itemset are shown in Table 4.4. For each generated itemset,

it checks whether it is a HUIs; if so, adds the itemset to a set of HUIs. Here, the total of

iutility of {mn} is 25, so there is no need to add in output. After that, it is decided whether

the itemset is further extended based on the pruning measure sum of iutility and rutility. Here

the pruning measure sum of iutility and rutility value of itemset {mn} is 42 higher than the

MinUtility threshold, so itemset {mn} can be further extended by adding the item {o}. The

utility lists of 3-itemset and 4-itemset are shown in Table 4.5 and Table 4.6, respectively. In

the same way all itemsets are preceded and simultaneously added the itemset into the set of

HUIs recursively. So the itemset construction order of the proposed approach is {m, mn,

mno, mnok, mnokl …….}. Finally, it discovers the HUIs from the given dataset which is

{mnok, mnokl, mnol, okl}.

4.5 Performance Evaluation

Existing state-of-the-art approaches for HUIM explore the search space as TWU ascending

order. The proposed SCAO-based search space exploration technique incorporates into the

existing state-of-the-art algorithms such as HUI-Miner, mHUI-Miner, and ULB-Miner. The

proposed approaches are called SCAO-HUI-Miner, SCAO-mHUI-Miner, and SCAO-ULB-

Miner. To evaluate the effectiveness of these approaches, extensive testing is conducted on

diverse real datasets using different MinUtility percentages. The experimental results are

then compared with other state-of-the-art methods.

4.5.1 Experimental Environment

All the algorithms were implemented in Java, and then tested on a system with 8GB RAM

and an Intel Core i5 processor running Windows 10 Pro. To assess the performance of the

algorithm under different MinUtility values, standard real-time datasets[60] were used.

Table 4.9 provides details of the dataset properties and a comprehensive description. The

datasets exhibited variations in the number of items, transactions, and transaction lengths.

SCAO based Search Space Exploration Technique for HUIM

54

Table 4.9: Characteristics of Dataset

Sr.No Dataset Name Number of
Transactions

Number of
Items

Average
transaction

length

1 Foodmart 4141 1559 4.4
2 Connect 67,557 129 43
3 Chess 3196 75 37
4 Retail 88,162 16,470 10.3
5 BMS 59,602 497 2.51
6 Kosark 990002 41270 8.1000
7 eCommerce 14975 3468 11.71

4.5.2 Performance Evaluation with HUI-Miner

The compared algorithms were executed on diverse datasets using progressively decreasing

utility thresholds until either the execution time became excessive or the memory reached

its capacity. The number of comparisons required for join operations and execution time

were recorded during these experiments. The number of comparisons and running time of

the proposed SCAO-HUI-Miner is compared with HUI-miner on various real datasets,

which are shown in Tables 4.10 &Table 4.11 respectively. Number of comparisons and

running time of the proposed SCAO-HUI-Miner and HUI-miner on various real datasets are

plotted in the Figures 4.4 & Figure 4.5, respectively. The result analysis shows that the

proposed SCAO-HUI-Miner requires 12 to 27 percent less number of comparisons

compared to HUI-miner and it is 8 to 22 percent faster than HUI-Miner on standard real

datasets.

Table 4.10: No of comparisons (HUI-Miner Vs SCAO-HUI-Miner)

Dataset

HUI-Miner

(in Thousands)

SCAO-HUI-Miner

(in Thousand)

Improvement

(%)

Retail 3377 2458 27.21

Bms 41369 32648 21.08

Foodmart 44637 39426 11.67

kosark 78336 62348 20.41

Chess 734152 624573 14.93

SCAO based Search Space Exploration Technique for HUIM

55

Figure 4.4: Number of comparisons (HUI-Miner Vs. SCAO-HUI-Miner)

Table 4.11: Execution time comparison (HUI-Miner Vs SCAO-HUI-Miner)

Dataset HUI-Miner

(Execution time in

ms)

SCAO-HUI-Miner

(Execution time in ms)

Improvement (%)

retail 617 479 22.37

bms 1088 904 16.91

Foodmart 1105 1019 7.78

chess 4139 3611 12.76

kosark 4420 3748 15.2

Figure 4.5: Execution time comparison (HUI-Miner Vs. SCAO-HUI-Miner)

SCAO based Search Space Exploration Technique for HUIM

56

4.5.3 Performance Evaluation with mHUI-Miner

The comparative analysis of number of comparisons and running time required for the

proposed SCAO-based search space exploration employed to mHUI-Miner called SCAO-

mHUI-Miner and mHUIMiner is presented in Table 4.12 & Table 4.13. Performances of

both approaches for number of comparisons and running time are plotted in Figure 4.6 &

Figure 4.7. The proposed technique SCAO-mHUIMiner requires approximately 10 to 25

percent less number of comparisons and 6% to 23% less execution time than mHUI-Miner.

Table 4.12: No of comparisons mHUI-Miner Vs SCAO-mHUI-Miner

Dataset

mHUI-Miner

(in Thousand)

SCAO-mHUI-Miner

(in Thousand)

Improvement

(%)

Foodmart 1796 1379 23.22

retail 3255 2936 9.8

bms 37491 27939 25.48

kosark 75035 67087 10.59

chess 403105 324066 19.61

Figure 4.6: Number of comparisons (mHUI-Miner Vs SCAO-mHUI-Miner)

SCAO based Search Space Exploration Technique for HUIM

57

Table 4.13: Execution time comparison (mHUI-Miner Vs SCAO-mHUI-Miner)

Dataset

mHUI-Miner

(Execution time in ms)

SCAO-mHUI-Miner

(Execution time in ms) Improvement (%)

Foodmart 225 177 21.33
bms 385 295 23.38
retail 566 528 6.71
chess 3067 2535 17.35

kosark 5241 4770 8.99

Figure 4.7: Execution time comparison (mHUI-Miner Vs SCAO-mHUI-Miner)

4.5.4 Performance Evaluation with ULB-Miner

The comparison of the proposed approach incorporated into ULB-Miner called SCAO-ULB-

Miner and ULB-Miner for number of comparisons and running time is as shown in Table

4.14 & Table 4.15 and demonstrated in Figure 4.8 & Figure 4.9. The proposed technique

SCAO-ULB-Miner has been found to be 12 to 28% faster than ULB-Miner because SCAO-

ULB-Miner requires 8 to 26 percent less number of comparisons.

SCAO based Search Space Exploration Technique for HUIM

58

Table 4.14: No of comparisons ULB-Miner Vs SCAO-ULB-Miner

Dataset

ULB-Miner

(in Thousand)

SCAO-ULB-Miner

(in Thousand)

Improvement

(%)

Foodmart 536 396 26.12

retail 2856 2249 21.25

bms 33284 30547 8.22

chess 37733 32695 13.35

kosark 67378 58423 13.29

Figure 4.8: Number of comparisons (ULB-Miner Vs SCAO-ULB-Miner)

Table 4.15: Execution time comparison (ULB-Miner Vs SCAO-ULB-Miner)

Dataset
ULB-Miner

(Execution time in ms)
SCAO-ULB-Miner

(Execution time in ms) Improvement (%)

Foodmart 322 231 28.26

retail 690 573 16.96

bms 829 680 17.97

chess 1170 1030 11.97

kosark 4797 4262 11.15

SCAO based Search Space Exploration Technique for HUIM

59

Figure 4.9: Execution time comparison (ULB-Miner Vs SCAO-ULB-Miner)

PUCP-Miner: Predicted Utility Co-exist Pruning

60

CHAPTER-5

PUCP-Miner: Predicted Utility Co-exist Pruning

5.1 Introduction

Utility list-based HUIM approaches perform several costly utility list join operations. From

the literature survey, it has been identified that the performance of the existing state-of-the-

art approaches is limited due to performing unnecessary utility list join operations. Based on

the item's co-existence in the dataset, the researchers proposed Predicted Utility Co-Exist

Structure known as PUCS to store the utility data. The research work also proposes Predicted

Utility Co-Exist Pruning known as PUCP to eliminate unnecessary utility list join

operations. PUCP greatly reduces the utility list join operations and thus it improves the

performance of the algorithm. It eliminates the low utility itemsets directly without

performing the join operations. Details of the proposed structure PUCS and proposed

pruning method PUCP are described in the next section.

5.2 The PUCS (Predicted Utility co-exist Structure)

A novel structure called PUCS based on the coexistence analysis of the items is shown in

Figure 5.1. The set of triplets of the form (x, y, PU)∈ IxIxR is known as PUCS. The predicted

utility of itemset xy is represented by PU in the triplet. The PUCS is created concurrently

with the creation of the initial utility list for the items during the second scanning of the

database.

= (() + ())∈ (5.1)
Figure 5.2 illustrates the PUCS structure of the sample dataset presented in Table 5.1 &

Table 5.2. In this context, we define the pruning condition as “If there is no tuple (x, y, PU)

in PUCS structure where PU is greater than or equal to MinUtility, then we consider the

itemset p = {xy} and its supersets are low utility itemsets. Consequently, there is no need to

PUCP-Miner: Predicted Utility Co-exist Pruning

61

further explore the itemset x, which means no need to perform the costly utility list join

operation.

L M N O

K PUKL PUKM PUKN PUKO

L PULM PULN PULO

M PUMN PUMO

N PUNO

Figure 5.1: PUCS Structure

N O K L

M 42 35 16 18

N 33 33 23

O 40 23

K 32

Figure 5.2: PUCS of the sample database

Table 5.1:Sample Transaction Database

Transaction k l m n o p q

T1 - 1 2 - 1 - -

T2 - - - - - 3 1

T3 3 4 - - 2 - 1

T4 1 1 - 1 - - -

T5 1 2 3 4 5 - -

Table 5.2:Sample Utility Table

Item k l m n o p q

Profit 5 1 3 4 2 1 2

During the second database scanning, the PUCS structure is constructed along with an initial

utility list of items. Within the PUCS structure, we consider the elements for items M and

N, represented as the triplet <M, N, PUMN>. Here, PUMN corresponds to the sum of the iutility

and rutility values for the itemset {MN}. This value can be calculated during the initial

database scanning process.

Additionally, we propose a unique pruning strategy called PUCP (Predicted Utility Co-exist

Pruning) to minimize the number of join operations using the PUCS structure. This strategy

aims to efficiently predict and remove itemsets that are unlikely to have significant utility,

thereby reducing the computational burden associated with unnecessary join operations.

5.3 The PUCP (Predicted Utility co-exist Pruning)

According to property 1, previous algorithms like HUI-miner, mHUI-Miner, and ULB-

Miner trim the search space, using the addition of iutility and rutility values of an itemset.

Existing algorithms explore the search space as TWU ascending order. The details of the

search space exploration are included in chapter 4. Consider the item x, it can be further

extended by its successor node to represent the item y. Existing approaches perform the join

PUCP-Miner: Predicted Utility Co-exist Pruning

62

operations on utility lists of x and y to construct the utility list of {xy} even though itemset

{xy} is a low utility itemset. Existing state of art algorithms perform number of costly utility

list join operations for constructing low-utility itemsets.

The proposed PUCP suggests whether the join operation should be performed or not. It

eliminates the joining operations for the low utility itemset. For constructing the utility list

of itemset {xy}, the proposed algorithm called PUCP-Miner checks the element <x, y, PUxy>

from PUCS. If an element does not exist in the PUCS where PUxy ≥ MinUtility, itemset {xy}

is discarded directly without constructing the utility list of itemset {xy}. As a result, it will

minimize join operations of the utility list.

Consider MinUtility threshold value 40 as an example. To construct the itemset {MN}

and its utility list, join operation is applied on the utility list of individual items M & N.

According to PUCP, it checks the PUMN from the PUCS that is 42, so join operations have

been performed. While for the construction of itemset {MO} the PUMO from the PUCS is

35, less than the MinUtility threshold, so there is no need to perform the join operation. By

removing needless join operations, this pruning method allows PUCP to reduce the number

of join operations significantly.

The overall procedure to discover high utility itemsets by the proposed approach namely

PUCP-Miner is represented in figure 5.3.

Figure 5.3: Proposed Model for PUCP-Miner.

PUCP-Miner: Predicted Utility Co-exist Pruning

63

First PUCP-Miner scans the dataset to calculate the TWU and support count of each item

and discards the unpromising items. The items with TWU less than the MinUtility threshold

are considered as unpromising items. After that, it arranges the remaining items in the

transaction according to support count ascending order (SCAO) called a revised transaction.

The set of revised transactions is called the revised database. The revised database is scanned

and it generates the initial utility list of each item and constructs the PUCS simultaneously.

The method then explores search space represented in the set enumeration tree as support

count in ascending order to extend the itemset by combining with another item. Next, it

fetches the element from the PUCS corresponding to the itemset to be extended. If the PU

of the element satisfies the MinUtility requirement then the join operation is performed

otherwise, the join operation is eliminated. The utility of the extended itemset is checked if

it is higher or equal to MinUtility then it will be added to the HUI list. Next, it checks the

pruning condition, if the iutility and rutility of the itemset are higher than the MinUtility

threshold then the itemset is further extended. This procedure is performed recursively to

explore all itemsets. Proposed methodology is summarized in Algorithm -1, 2, and 3.

Algorithm 1: Creating preliminary utility lists & Build PUCS
Input: - Transaction Database DB, Minimum utility threshold MinUtility
Output: - List of Utilitylist of each promising items LULs
1. Scan the DB
2. compute TWU of all items i
3. Calculate Support_Count of each item i
4. If TWU(i) < MinUtility then

Discard item i
Endif

5. Rearrange the items in the transaction as SCAO (Support Count Ascending Order)
6. Scan the database DB again
7. Create first list of utility for each favorable item.
8. Build the PUCS (Predicted Utility Co-exist Structure)

PUCP-Miner: Predicted Utility Co-exist Pruning

64

Algorithm 2: Mining Algorithm
Input: -LUL - List of UtilityList of 1-itemset
Prev.UL- previous item's utiitylist initially it is empty,
MinUtility – User-specific threshold for Minimum utility
Output: - itemsets with high utility

1. For each element K in LUL do
2. If TOTAL of K’s iutility ≥ MinUtility then
3. Add K & its previous itemsets in the resultset
4. End If
5. If TOTAL of all K's iutility & rutility ≥ MinUtility then
6. Create empty extUL;
7. For each element L follow K in LUL do
8. If ∃(K,L,PUKL) ∈ PUCS such that

PUKL ≥ MinUtility then
extUL=extUL+ join(Prev.UL,K,L)
Endif

9. Endfor
10. Mining(K, extUL, MinUtility)
11. Endif
12. Endfor

Algorithm 3: Join Algorithm
Input: - ULPrev- itemset Prev ‘s utility list.

ULK– itemset K's utility list,
ULL – itemset L's utility list

Output: - ULKL- itemset KL's utility list.

1. Initialize ULKL is NULL
2. Eoreach component Ek ULK

3. if ∃ component EL ULL && Ek.TRid == EL.TRid then
4. if ULPrev ≠ empty then
5. Search component EPrev∈ ULPrev have same TRid
6. Create new component

Where EkL = <Ek.TRid, Ek.iutility+EL.iutility – Eprev.iutility,
EL.rutility>

7. else
8. EkL= <Ek.TRid, Ek.iutility + EL.iutility – Eprev.iutility, EL.rutility>
9. Endif
10. Insert component EkL to ULKL

11. Endif
12. Endfor
13. return ULKL

PUCP-Miner: Predicted Utility Co-exist Pruning

65

5.4 Performance Evaluation

Comprehensive experiments were conducted on a variety of real datasets, employing

different MinUtility percentages, to evaluate the performance of the proposed PUCP-Miner

thoroughly. The experimental results of PUCP-Miner were compared to state-of-the-art

methods including mHUI-Miner, ULB-Miner, and HUI-Miner, specifically focusing on

memory requirements and execution time. Each experiment was implemented in a JAVA

environment and executed on a computer with 8GB RAM and a 3.4GHz Intel Core i5 CPU.

Standard real-time datasets were utilized in the experiments to measure performance of the

algorithm accurately. Characteristics of the datasets[60] used in the experiments are

presented in Table 5.3.

Table 5.3: Dataset characteristics used in experiments

Sr.No Name of Dataset Number of
Transactions

Number of
Items

Average
transaction

length
1 Foodmart 4141 1559 4.4

2 Retail 88,162 16,470 10.3

3 BMS 59,602 497 2.51

4 Kosark 990002 41270 8.1000

5 ecommerce 14975 3468 11.71

5.4.1 Execution Time Analysis.

The execution time of the proposed approach PUCP-Miner with state-of-the-art approaches

HUI-Miner, mHUI-Miner, and ULB-Miner on different datasets is listed in Tables 5.4, 5.5,

and 5.6, respectively. Execution time is also plotted in Figures 5.4, 5.5, and 5.6 for

performance comparison. It has been observed that on the ecommerce dataset, compared to

HUI-Miner, mHUI-Miner, and ULB-Miner, the suggested PUCP-Miner is almost 62%,

65%, and 20% faster, respectively. On the BMS dataset, PUCP-Miner takes nearly 45% less

time than HUI-Miner, 46% less time than mHUI-Miner, and 42% less time than ULB-Miner.

On the Foodmart dataset, PUCP-Miner is almost 67% quicker than HUI-Miner, 18% quicker

than mHUI-Miner, and 18% quicker than ULB-Miner. On the retail dataset, the proposed

PUCP-Miner almost takes 88%, 74%, and 35% less running time than HUI-Miner, mHUI-

Miner, and ULB-Miner respectively. Lastly, on the Kosark dataset, PUCP-Miner is

PUCP-Miner: Predicted Utility Co-exist Pruning

66

approximately 32% faster than HUI-Miner, 25% faster than mHUI-Miner, and 27% faster

than ULB-Miner. From the execution time analysis, it is concluded that the proposed PUCP-

Miner outperforms on retail, BMS, and ecommerce datasets and it has a satisfactory

improvement in execution time on Foodmart and Kosark datasets.

Table 5.4: Execution time comparison HUI-Miner Vs PUCP-Miner

Dataset
HUI-Miner

(Execution time in ms)

PUCP-Miner

(Execution time in ms)
Improvement (%)

Foodmart 393 131 66.67

BMS 394 218 44.67

ecommerce 1323 497 62.43

kosark 4415 3020 31.6

Retail 37857 4471 88.19

Figure 5.4: Execution time comparison HUI-Miner Vs PUCP-Miner.

PUCP-Miner: Predicted Utility Co-exist Pruning

67

Table 5.5: Execution time comparison mHUI-Miner Vs PUCP-Miner.

Dataset
mHUI-Miner

(Execution time in ms)

PUCP-Miner

(Execution time in ms)
Improvement (%)

Foodmart 161 131 18.63
BMS 402 218 45.77

ecommerce 1434 497 65.34
kosark 4030 3020 25.06
Retail 17002 4471 73.7

Figure 5.5: Execution time comparison mHUI-Miner Vs PUCP-Miner.

Table 5.6: Execution time comparison ULB-Miner Vs PUCP-Miner

Dataset

ULB-Miner

(Execution time in ms)

PUCP-Miner

(Execution time in ms) Improvement (%)

Foodmart 160 131 18.13
BMS 378 218 42.33

ecommerce 624 497 20.35
kosark 4112 3020 26.56
Retail 6897 4471 35.17

PUCP-Miner: Predicted Utility Co-exist Pruning

68

Figure 5.6: Execution time comparison HUI-Miner Vs PUCP-Miner

It has been observed from overall result analysis shown in Table 5.7 that using only SCAO

based approach improves the performance of HUI-Miner by approximately 14 %, mHUI-

Miner by 16%, and ULB-Miner by 17%. The approach incorporating both SCAO-based

search space exploration and PUCP in PUCP-Miner is approximately 59% faster than HUI-

Miner, approximately 46% faster than mHUI-Miner, and approximately 29% faster than

ULB-Miner.

Table 5.7: overall improvement of proposed approaches

Algorithms

Average improvement (%)

SCAO

Based Approach

PUCP-Miner

(SCAO + PUCP)

HUI-Miner 15.00 58.71
mHUI-Miner 15.55 45.7
ULB-Miner 17.26 28.50

5.4.2 Memory Analysis

The memory requirements of PUCP-Miner and existing approaches mHUI-Miner and ULB-

Miner on different datasets are listed in Tables 5.8 and 5.9, respectively. Memory

requirement is also plotted in Figures 5.7 and 5.8 for performance comparison. The findings

from the experiments indicate that PUCP-Miner utilizes significantly less memory compared

PUCP-Miner: Predicted Utility Co-exist Pruning

69

to mHUIMiner and ULB-Miner on the ecommerce dataset, with reductions of approximately

46% and 8%, respectively. On the BMS dataset, PUCP-Miner consumes around 12%, and

13% less memory than mHUIMiner, and ULB-Miner, respectively. When considering the

Foodmart dataset, PUCP-Miner demonstrates a memory reduction of 47% and 8% compared

to both mHUI-Miner and ULB-Miner. For the retail dataset, PUCP-Miner requires 32% and

12% less memory than mHUI-Miner and ULB-Miner, respectively. And finally, on the

Kosark dataset, PUCP-Miner consumes approximately 9% and 7% less memory than mHUI-

Miner and ULB-Miner.

Table 5.8: Memory Requirement (mHUI-Miner Vs PUCP-Miner)

Dataset

mHUI-Miner

(memory in MB)

PUCP-Miner

(memory in MB) Improvement (%)

Foodmart 87.91 47.3 46.19
Retail 511.78 349.36 31.74
BMS 24.04 20.92 12.98

Ecommerce 87.91 47.3 46.19
Kosark 509 465 8.64

Figure 5.7: Memory comparison mHUI-Miner Vs PUCP-Miner

PUCP-Miner: Predicted Utility Co-exist Pruning

70

Table 5.9: Memory Requirement (ULB-Miner Vs PUCP-Miner)

Dataset

ULB-Miner

(memory in MB)

PUCP-Miner

(Memory in MB) Improvement (%)

Foodmart 51.17 47.3 7.56
Retail 398.82 349.36 12.4
BMS 24.11 20.92 13.23

Ecommerce 51.17 47.3 7.56
Kosark 495.79 465 6.21

Figure 5.8: Memory comparison ULB-Miner Vs PUCP-Miner

Conclusion and Future Work

71

CHAPTER-6

Conclusion and Future Work

6.1 Conclusion

Nowadays, every organization has to design an efficient decision support system to sustain

their business in recent tough competition. The organization has vast amount of unused data

of employees, customers, products, services, etc. The knowledge or information hidden

inside the data can be helpful in designing a proper DSS. An association rule mining: a data

mining technique that discovers the knowledge from the raw data. FIM is the conventional

approach of association rule mining. The main limitation of the FIM is that it considers only

the presence or absence of the items in the data. But in real-life applications with the item's

presence, it is highly necessary to take the item's quantity and importance into account.

HUIM (High Utility Itemset Mining) considers the item's quantity with its

importance/weight/profit. The pattern derived from the HUIM is more significant than

conventional FIM. In the last two decades, HUIM become an emerging trend in the research

community. Among the most research works carried out for HUIM with various approaches,

the utility list-based approaches are outstanding as it does not generate the candidate itemset.

However, the performance of the utility list-based approaches are limited due to costly

utility list join operations. These approaches also perform unnecessary utility list join

operations for the low utility itemsets. The cost of the join operation is directly related to

the number of comparisons required to search the common transactions between utility lists.

To reduce the cost of the join operation, it is essential to minimize the number of

comparisons required to search common transactions between the utility lists. SCAO-based

search space exploration techniques greatly reduce such comparisons. Hence, it improved

the performance of the HUIM approaches. PUCP (Predicted Utility Co-exist Pruning) uses

the PUCS (Predicted Utility Co-exist Structure) to eliminate the unnecessary utility list join

operations for the low utility itemsets. PUCP decides in advance whether it is necessary to

perform join operations or discard the itemset. It reduces the number of join operations.

Comprehensive experiments were conducted on a variety of real datasets. The experimental

results show that SCAO-based search space exploration techniques improve the

Conclusion and Future Work

72

performance of the HUIM approach from 13 to 18 percent. It improved the performance of

the algorithm because the SCAO-based approach greatly reduced the number of

comparisons from 12 to 27 percent. The combination of both SCAO-based search space

exploration techniques and PUCP called PUCP-Miner has notable improvement in running

time from 28 to 59 percent. It also consumes 8 to 46 percent less memory than other state-

of-the-art methods on some standard real datasets.

6.2 Future Work

This thesis work mainly design with a focus on a static dataset. Since the database is changed

often in real-world applications, more work will be needed to accommodate streams and

dynamic datasets. Future work will involve adapting the model to handle streaming data and

dynamic datasets where the database is continuously updated. This requires the development

of algorithms that can efficiently process and analyse data in real-time.

Future work for this thesis can be directed towards several other key areas to enhance its

applicability and robustness. The following aspects can be considered for further expansion:

This thesis only considered the constant and positive utility value of the object. Reflecting

the shifting preferences and importance of items over time requires careful evaluation of

dynamic utility values. In order to enable the system to adjust to changing user preferences,

future work will require creating processes to record and simulate the dynamics of utility

values. A further level of complexity is added to the model by including negative utility

values. It will function for the items in reference to the utility limitations in the future. As

the dataset grows in size and complexity, scalability becomes crucial. Future work will focus

on optimizing algorithms and techniques to handle large-scale datasets efficiently, ensuring

that the model remains practical and scalable for real-world applications.

By addressing these aspects, the research can evolve to create a more sophisticated and

versatile system capable of handling the challenges posed by real-world, dynamic datasets

and diverse user preferences.

References

73

REFERENCES

[1] Bishop, T., Reinke, J., & Adams, T. (2011). Globalization: Trends and

Perspectives. Journal of international business research, 10, 117.

[2] Rinaldi, M., Parretti, C., Salimbeni, L. B., & Citti, P. (2015). Conceptual design of a

decision support system for the economic sustainability of nonprofit

organizations. Procedia CIRP, 34, 119-124.

[3] Sadiku, A. E. M., & Matthew, N. O. (2015). Shadare and SM, “A Brief Introduction

to Data Mining,” Eur. Sci. J, 11(21), 1-3.

[4] Lake, P., Crowther, P., Lake, P., & Crowther, P. (2013). Data, an organisational

asset. Concise Guide to Databases: A Practical Introduction, 3-19.

[5] Xu JJ. (2014). Knowledge discovery and data mining. in Computing Handbook

Information Systems and Information Technology, Third Ed (pp. 1–22).

[6] Maimon, O., Rokach, L. (2009). Introduction to Knowledge Discovery and Data

Mining. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery

Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_1.

[7] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association

rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).

[8] Hokey Min (2006) Developing the profiles of supermarket customers through data

mining, The Service Industries Journal, 26:7, 747-763, DOI:

0.1080/02642060600898252.

[9] Luna, J. M., Fournier‐Viger, P., & Ventura, S. (2019). Frequent itemset mining: A 25

years review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 9(6), e1329.

[10] Brauckhoff, D., Dimitropoulos, X., Wagner, A., & Salamatian, K. (2009, November).

Anomaly extraction in backbone networks using association rules. In Proceedings of

the 9th ACM SIGCOMM conference on Internet measurement (pp. 28-34).

[11] Yao, H., Hamilton, H. J., & Butz, C. J. (2004, April). A foundational approach to

mining itemset utilities from databases. In Proceedings of the 2004 SIAM

International Conference on Data Mining (pp. 482-486). Society for Industrial and

Applied Mathematics.

[12] Iqbal, M., Setiawan, M. N., Irawan, M. I., Khalif, K. M. N. K., Muhammad, N., &

References

74

Aziz, M. K. B. M. (2022). Cardiovascular disease detection from high utility rare rule

mining. Artificial Intelligence in Medicine, 131, 102347.

[13] Pillai, J., & Vyas, O. P. (2010). Overview of itemset utility mining and its

applications. International Journal of Computer Applications, 5(11), 9-13.

[14] Zida, S., Fournier-Viger, P., Lin, J. C. W., Wu, C. W., & Tseng, V. S. (2017). EFIM:

a fast and memory efficient algorithm for high-utility itemset mining. Knowledge and

Information Systems, 51(2), 595-625.

[15] Zhang, C., Almpanidis, G., Wang, W., & Liu, C. (2018). An empirical evaluation of

high utility itemset mining algorithms. Expert Systems with applications, 101, 91-

115.

[16] Ristovska, K., & Ristovska, A. (2014). The impact of globalization on the

business. Economic Analysis, 47(3-4), 83-89.

[17] Voleti S (2017). The Value of Data : A Motivating Example. Essentials Bus. Anal. p.

19–39.

[18] Bavdaž, M., Snijkers, G., Sakshaug, J. W., Brand, T., Haraldsen, G., Kurban, B., ...

& Willimack, D. K. (2020). Business data collection methodology: Current state and

future outlook. Statistical Journal of the IAOS, 36(3), 741-756.

[19] Chan, S. L., & Ip, W. H. (2011). A dynamic decision support system to predict the

value of customer for new product development. Decision support systems, 52(1),

178-188.

[20] Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques third

edition. University of Illinois at Urbana-Champaign Micheline Kamber Jian Pei

Simon Fraser University.

[21] Tan, P.N., Steinbach, M. and Kumar, V. (2016) Introduction to Data Mining. Pearson

Education India, New Delhi.

[22] Kesavaraj, G., & Sukumaran, D.S. (2013). A study on classification techniques in

data mining. 2013 Fourth International Conference on Computing, Communications

and Networking Technologies (ICCCNT), 1-7.

[23] Pande, S., Sambare, S.S., & Thakre, V.M. (2012). Data Clustering Using Data Mining

Techniques.

[24] Abhinav Rai (2022). An Overview of Association Rule Mining & its

Applications;5:927–30.

[25] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to

knowledge discovery in databases. AI magazine, 17(3), 37-37.

References

75

[26] Gullo, F. (2015). From patterns in data to knowledge discovery: What data mining

can do. Physics Procedia, 62, 18-22.

[27] Borgelt, C. (2012). Frequent item set mining. Wiley interdisciplinary reviews: data

mining and knowledge discovery, 2(6), 437-456.

[28] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association

rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).

[29] Grahne, G., & Zhu, J. (2005). Fast algorithms for frequent itemset mining using fp-

trees. IEEE transactions on knowledge and data engineering, 17(10), 1347-1362.

[30] Pyun, G., Yun, U., & Ryu, K. H. (2014). Efficient frequent pattern mining based on

linear prefix tree. Knowledge-Based Systems, 55, 125-139.

[31] Zhang, X. H., He, Y. D., Wan, J. H., & Zhao, H. (2001). An Improved Algorithm for

Mining Association Rules. JOURNAL-NORTHEASTERN UNIVERSITY

NATURAL SCIENCE, 22, 401-404.

[32] Erwin, A., Gopalan, R. P., & Achuthan, N. R. (2007, October). CTU-Mine: An

efficient high utility itemset mining algorithm using the pattern growth approach.

In 7th IEEE international conference on computer and information technology (CIT

2007) (pp. 71-76). IEEE.

[33] Erwin, A., Gopalan, R. P., & Achuthan, N. R. (2008). Efficient mining of high utility

itemsets from large datasets. In Advances in Knowledge Discovery and Data Mining:

12th Pacific-Asia Conference, PAKDD 2008 Osaka, Japan, May 20-23, 2008

Proceedings 12 (pp. 554-561). Springer Berlin Heidelberg.

[34] Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate

generation. ACM sigmod record, 29(2), 1-12.

[35] Liu, Y., Liao, W. K., & Choudhary, A. (2005, August). A fast high utility itemsets

mining algorithm. In Proceedings of the 1st international workshop on Utility-based

data mining (pp. 90-99).

[36] Coenen, F. (2011). Data mining: past, present and future. The Knowledge

Engineering Review, 26(1), 25-29.

[37] Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data

mining. International Journal of Information Technology, 12(4), 1243-1257.

[38] Jentner, W., Keim, D.A. (2019). Visualization and Visual Analytic Techniques for

Patterns. In: Fournier-Viger, P., Lin, JW., Nkambou, R., Vo, B., Tseng, V. (eds) High-

Utility Pattern Mining. Studies in Big Data, vol 51. Springer, Cham.

https://doi.org/10.1007/978-3-030-04921-8_12.

References

76

[39] Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H. C., Tseng, V. S., & Philip, S. Y.

(2019). A survey of utility-oriented pattern mining. IEEE Transactions on Knowledge

and Data Engineering, 33(4), 1306-1327.

[40] Nguyen, Loan TT, Phuc Nguyen, Trinh DD Nguyen, Bay Vo, Philippe Fournier-

Viger, and Vincent S. Tseng. "Mining high-utility itemsets in dynamic profit

databases." Knowledge-Based Systems 175 (2019): 130-144.

[41] Shen, Y. D., Zhang, Z., & Yang, Q. (2002, December). Objective-oriented utility-

based association mining. In 2002 IEEE International Conference on Data Mining,

2002. Proceedings. (pp. 426-433).

[42] R. Chan, Q. Yang and YDS. (2003) Mining high utility itemsets. Third IEEE Int.

Conf. Data Mining, 2003, p. 19–26.

[43] Yao H, Hamilton HJ. (2006). Mining itemset utilities from transaction databases. Data

Knowl Eng 2006;59:603–26.

[44] Liu, Y., Liao, W. K., & Choudhary, A. (2005). A two-phase algorithm for fast

discovery of high utility itemsets. In Advances in Knowledge Discovery and Data

Mining: 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20,

2005. Proceedings 9 (pp. 689-695). Springer Berlin Heidelberg.

[45] Li, Y. C., Yeh, J. S., & Chang, C. C. (2005). Direct candidates generation: a novel

algorithm for discovering complete share-frequent itemsets. In Fuzzy Systems and

Knowledge Discovery: Second International Conference, FSKD 2005, Changsha,

China, August 27-29, 2005, Proceedings, Part II 2 (pp. 551-560). Springer Berlin

Heidelberg.

[46] Li, Y. C., Yeh, J. S., & Chang, C. C. (2008). Isolated items discarding strategy for

discovering high utility itemsets. Data & Knowledge Engineering, 64(1), 198-217.

[47] Hu, J., & Mojsilovic, A. (2007). High-utility pattern mining: A method for discovery

of high-utility item sets. Pattern Recognition, 40(11), 3317-3324.

[48] Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., & Lee, Y. K. (2009). An efficient

candidate pruning technique for high utility pattern mining. In Advances in

Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference, PAKDD

2009 Bangkok, Thailand, April 27-30, 2009 Proceedings 13 (pp. 749-756). Springer

Berlin Heidelberg.

[49] Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., & Lee, Y. K. (2009). Efficient tree

structures for high utility pattern mining in incremental databases. IEEE Transactions

on Knowledge and Data Engineering, 21(12), 1708-1721.

References

77

[50] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data mining and knowledge

discovery, 8, 53-87.

[51] Tseng, V. S., Wu, C. W., Shie, B. E., & Yu, P. S. (2010, July). UP-Growth: an

efficient algorithm for high utility itemset mining. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining (pp.

253-262).

[52] Tseng, V. S., Shie, B. E., Wu, C. W., & Philip, S. Y. (2012). Efficient algorithms for

mining high utility itemsets from transactional databases. IEEE transactions on

knowledge and data engineering, 25(8), 1772-1786.

[53] Ryang, H., Yun, U., & Ryu, K. H. (2016). Fast algorithm for high utility pattern

mining with the sum of item quantities. Intelligent Data Analysis, 20(2), 395-415.

[54] Liu, M., & Qu, J. (2012, October). Mining high utility itemsets without candidate

generation. In Proceedings of the 21st ACM international conference on Information

and knowledge management (pp. 55-64).

[55] Peng, A. Y., Koh, Y. S., & Riddle, P. (2017). mHUIMiner: A fast high utility itemset

mining algorithm for sparse datasets. In Advances in Knowledge Discovery and Data

Mining: 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26,

2017, Proceedings, Part II 21 (pp. 196-207). Springer International Publishing.

[56] Fournier-Viger, P., Wu, C. W., Zida, S., & Tseng, V. S. (2014). FHM: Faster high-

utility itemset mining using estimated utility co-occurrence pruning. In Foundations

of Intelligent Systems: 21st International Symposium, ISMIS 2014, Roskilde,

Denmark, June 25-27, 2014. Proceedings 21 (pp. 83-92). Springer International

Publishing.

[57] Duong, Q. H., Fournier-Viger, P., Ramampiaro, H., Nørvåg, K., & Dam, T. L. (2018).

Efficient high utility itemset mining using buffered utility-lists. Applied

Intelligence, 48, 1859-1877.

[58] Qu, J. F., Liu, M., & Fournier-Viger, P. (2019). Efficient algorithms for high utility

itemset mining without candidate generation. High-Utility Pattern Mining: Theory,

Algorithms and Applications, 131-160.

[59] Wu, P., Niu, X., Fournier-Viger, P., Huang, C., & Wang, B. (2022). UBP-Miner: An

efficient bit based high utility itemset mining algorithm. Knowledge-Based

Systems, 248, 108865.

References

78

[60] Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam,

H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th

European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD 2016) Part III, Springer LNCS 9853, pp. 36-40

List of Publication

79

List of Publications

1. Patel Suresh B, Sanjay M. Shah, and Mahendra N. Patel "An Efficient High

Utility Itemset Mining Approach using Predicted Utility Co-exist Pruning."

International Journal of Intelligent Systems and Applications in Engineering 10,

no. 4 (2022): 224-230. (SCOPUS Approved, ISSN: 2147-6799)

2. A Patel Suresh B, Sanjay M. Shah, and Mahendra N. Patel "An Efficient Search

Space Exploration Technique for High Utility Itemset Mining." Procedia Computer

Science 218 (2023): 937-948. (SCOPUS Approved, ISSN: 1877 0509)

80

81

	three-five.pdf
	02_Preliminaries_pages_signed.pdf
	PhD_Thesis_final - CD.pdf

